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A b s t r a c t  

A general description of the mutual orientation of 
two lattices is presented for the cases where the 
orientation is 'rational'. The coincidence site and 
displacement-shift complete lattices are genuine lat- 
tices whose parameters can be explicitly evaluated 
through a method based on the Smith normal form 
for integer matrices. In particular, a formula for the 
index 2 in terms of the transition matrix is proved 
to hold true for any symmetry, thereby improving 
previous statements. Following ideas originally per- 
taining to the theory of displacive transformations, 
the transition matrix is analysed in terms of elemen- 
tary shears. This may serve as a relevant physical 
criterion for classifying orientations. Applications 
include the theory of crystal interfaces and grain 
boundaries as well as structural transitions. 

I.  I n t r o d u c t i o n  

Beyond the classification of lattices into Bravais 
classes and crystal systems, which is a classical sub- 
ject, at least in three dimensions, an important ques- 
tion concerns the classification of pairs of lattices. 
Such questions are fundamental in the physics of 
interfaces and grain boundaries, as well as in some 
problems of structural transitions between crystalline 
states. Partial answers are provided by the crystal- 
lography of coincidence site lattices (CSL) and 
related displacement-shift complete (DSC) lattices, 
together with the description of structural units in 
grain boundaries. 

The particular instances yielding complete coin- 
cidence lattices - the rational orientations - are of 
great importance and have been extensively studied 
both experimentally and theoretically. Cubic systems 
were the first to be examined (Bollman, 1970; 
Warrington & Bufalini, 1971; Grimmer, 1971; 
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Pumphrey & Bowket, 1972; Grimmer, Bollmann & 
Warrington, 1974; Grimmer, 1974, 1976; Bleris & 
Delavignette, 1981), since they have the advantage 
that the structure matrices are proportional to the 
identity. Only recently have other systems such as the 
hexagonal one (Bonnet, Cousineau & Warrington, 
1981; Hag~ge, 1991) been investigated theoretically. 

Most problems studied thus far can be handled in 
a unified and often shorter way, which is presented 
in this paper. The main mathematical result we use 
is the Smith normal form of integral matrices. 
Although noted by Grimmer (1976), this tool does 
not seem to have received much attention. The Smith 
normal form of an integral matrix P is a diagonal 
integral matrix A that satisfies two properties: 
(i) P = UA V, where U and V are modular matrices, 
and (ii) the diagonal elements are ordered in an 
increasing way, each being a divisor of the next one. 
Under these conditions the Smith matrix is unique. 

The connexion between lattices and linear algebra 
is made by specifying a vectorial basis in each lattice. 
A change of basis within a lattice corresponds to a 
matrix with integer coefficients and determinant 1. 
Such matrices constitute a group, GL(n, Z), called 
the modular group, so all possible bases for a lattice 
can be indexed by the modular matrices. It follows 
that algebraic entities are characterized only up to 
multiplication by such modular matrices: for 
example, two structure matrices define the same lat- 
tice if one is the right product of the other by a 
modular matrix. Similarly, two transition matrices - 
accounting for the mutual orientation of two lattices 
- are equivalent if they satisfy a relation of type (i) 
mentioned above. Therefore it turns out that the Smith 
form is an invariant of all equivalent rational transi- 
tion matrices. This means that it represents geometric 
properties of the lattices, independent of the par- 
ticular bases. Moreover, the Smith decomposition is 
systematic - applies to all rational cases - and com- 
pletely algorithmic: as will be shown, the computa- 
tions of, say, the CSL or DSC lattices can be easily 
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implemented on a computer (the main step being a 
procedure returning the greatest common divisor of 
three integers). 

The second purpose of this paper is to develop an 
alternative approach of orientational relationships 
between lattices that is based on a decomposition into 
elementary 'shear '  transformations. Duneau & Oguey 
(1991) showed that the transition matrix between any 
two lattices of equal density can be decomposed into 
four shear transformations (in three dimensions). 
This number four is generic but, for particular and 
isolated relative orientations, only two shears (or even 
one shear) suffice to perform the transformation. Such 
situations are believed to have physical relevance as 
was recently argued in the case of icosahedral twins 
where no CSL exists (Duneau, 1990; Duneau & 
Oguey, 1990). 

In the present work we specialize to rational 
orientations and we will prove that if two n- 
dimensional lattices are related by a rational transi- 
tion matrix then they are also related by n -  1 shear 
transformations. This leaves us with two shears for 
the most general (rational) case in three dimensions. 
These transformations have lattice directions, lattice- 
invariant planes and rational amplitudes. It follows 
from a previous study (Duneau & Oguey, 1991) that 
both lattices are also related by a regular 'displacive' 
transformation performed by a finite and usually 
small displacement field. 

In § II we recall standard algebraic concepts of 
n-dimensional crystallography and we define the 
transition matrices associated with pairs of lattices. 
In § III, we give a short outline of the Smith normal 
forms of integral matrices and we consider a first 
example concerning the transition matrix with Z = 5. 
§ IV provides explicit formulae for the intersection 
lattices (CSL) and sum (DSC) lattices. In § V, we 
show that any n-dimensional transition matrix is 
equivalent to a product of  at most n - 1 rational shear 
matrices. Further results in the two- and three- 
dimensional cases are presented in § VI. 

II. A l g e b r a i c  c o n c e p t s  in the  theory  o f  l a t t i c e s :  
a b r i e f  s u m m a r y  

1. N-dimensional crystallography 

An n-dimensional Bravais lattice in the n- 
dimensional space R" is specified by Lo = AZ n, where 
A is a regular n x n matrix called a structure matrix. 
It defines a basis (a) = ( a ~ , . . . ,  an) of Lo through the 
relation ai = Aei = ~jn= 1 Ajiej, 

al  = Ae~ = , . . . ,  a,, = Ae, ,  = ( I I .1 )  

1 n 

where (e) = (el, • • •, en) denotes the standard basis of 
Z": el = (1, 0 , . . . ,  0) etc. Any lattice node x of  L~ is 

of the form x = A X  =Y. X~ai, where X has integer 
entries. Thus the structure matrix maps the abstract 
lattice Z n in the space of indices onto the physical 
lattice in real space. 

A group isomorphism exists between the point 
group P of La, consisting of all rotations of SO(n) 
[O(n)]  leaving La unchanged, and a group of n x n 
matrices with integral entries and determinant 1 (+ 1). 
Thus if p belongs to the point group P then 
pa~, p a 2 , . . . ,  pan belong to La, actually constituting 
a new basis; the integral representation g is provided 
by the components of pa~ in the former basis (a): 
p a i =  ~ gjiaj. In other words, p and g are conjugates: 
g = A - l p A  and det (g) = d e t  (p). An 'arithmetic 
group' G is defined by G = A - ~ P A = { g = A - l p A I p  
in P}; G is isomorphic to P by means of the con- 
jugacy. G contains only n x n integral matrices with 
determinant +1, so it is a subgroup of the modular  
group GL(n, Z). 

However, the basis (a) is not unique and infinitely 
many different bases of L~ exist, each being associated 
with structure matrices A' of the form A ' =  A U where 
U is a modular  matrix. Obviously, L~ = A UZ". The 
corresponding arithmetic group is G'=A' - IPA '= 
U-IGU, so that G'  is conjugated to G in the modular  
group. In summary, each lattice L~ is associated with 
a unique conjugacy class F={U-~GU, U in 
GL(n, Z)}. For example, there are 73 such classes in 
the modular  group GL(3, Z). 

2. The mutual orientation of two lattices 

The orientational relationships between two lattices 
La and Lb such that a coincidence lattice exists corres- 
pond to rotations p such that g = A-~pA is a rational 
matrix (a matrix with rational entries). Such a 
property was first pointed out as pertaining to the 
matrix rotation p itself in the case of cubic lattices 
(Warrington & Bufalini, 1971). For more general lat- 
tices, only the conjugated matrix g = A-lpA satisfies 
this property. For simple cases only, the smallest 
integer/~ such that/zg is an integral matrix is precisely 
the index Z associated with the coincidence site lat- 
tice (CSL) (Grimmer, Bollmann & Warrington, 1974, 
and references therein; Grimmer, 1974). 

A transition matrix T from La to another lattice 
Lb is a matrix such that Lb = A TZ". Such a matrix 
always exists and can be obtained as follows: given 
a basis (b) = ( b l , . . . ,  b .)  of Lb, a n  n x n array of real 
numbers (T~j) is deduced from the decomposition of 
(b) with respect to (a), 

b ,=  ~ Ts, a j. (II.2) 
j = l  

If B is the structure matrix defined by bi = Bei = 
r l  

~j=l Bjiej, this equation means that B = AT. So the 
transition matrix is related to the structure matrices by 

T= A-1B. (I1.3) 
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As mentioned in the Introduction, the structure 
matrices depend on the choice of the bases (a) and 
(b). If U and V are modular  matrices then L~ = 
A U Z  n, Lb = B V Z  n and the new transition matrix is 
T ' =  U-ITV:  the two matrices T and T' are 
equivalent. 

From (II.3) we have det (T) =de t  (B) /de t  (A), 
meaning that det (T) is the relative density of La with 
respect to Lb. In particular, La and Lb have the same 
density if and only if det (T) = +1; if, furthermore, 
T has integer entries, then T is a modul~.r matrix and 
Lb = L,,. 

The intersection L, n Lb is defined as the set of 
nodes belonging to both lattices. The sum L,, + Lb 
is the set of points x + y  where x is in L,, and y is 
in Lb. L , + L b  is generated by the 2n vectors 
( a ~ , . . . ,  an, b ~ , . . . ,  b,) ,  which are, of course, linearly 
dependent. 

In general, the intersection of L~ and Lb reduces 
to the origin {0} and the sum is a dense set of points 
in space. This sum is actually a Z module, as pointed 
out and used by Gratias & Thalal (1988). This generic 
case is met if, for instance, La is the two-dimensional 
square lattice Z 2 spanned by a~ = (1, 0) and a2 = (0, 1), 
whereas Lb is rotated from La by 7r/4. These situ- 
ations are also characterized by transition matrices 
having only irrational entries. Intermediate situations, 
where T has both rational and irrational entries, may 
also occur. Such irrational cases were studied by 
Duneau & Oguey (1991) and will not be discussed 
here. 

We will consider only transition matrices T with 
rational entries. This implies that L~ and Lb have a 
full coincidence lattice in the sense that L,, n Lb is an 
n-dimensional sublattice of both La and Lb, usually 

0 00_0  0 000 ° 0 0 0 
000 mO_.,O~000 Or.o 0%0,.~0 
0 O"oWAO 0 0 ~ , ~ 0  .G¥~"OW@ 

0 0 O W n © , . O  O " O , / % Y ~ O ,  0 
w o o~-',.-.. ~ o oyr;.,~,._o o--- 
o o • ---- 'J o O" - ' / ~ "~a~°  0 ~  

@ 0 0 0_.~ ,-, - 0  u® O0 0 ~ 0 % " 0 0  0 
Oo ®,-'. '- ' ' ' ' -- , '7au.. .p o o ® o o 

0 
.-. u: "o o o ® o o o o o 
u~ O ....... - a ~  
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@ 0 0 0 0 @ 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Fig. 1. The ,~ = 5 geometry of a square lattice corresponds to a 
rotation angle of approximately 36.87 ° . The standard bases are 
{al, a2} and {bx, b2}. The proportional bases provided by means 
of the Smith normal form are {al, a~} and {hi, b~} with a] = 5hi 
and 5a~ = b~. The coincidence lattice is shown by the dark circles. 

referred to as the CSL (coincidence site lattice). In 
this case the sum lattice L~+Lb is also an n- 
dimensional lattice - without any cluster points - 
usually called the DSC (displacement-shift complete) 
lattice. 

If Lb is identical with L,, up to a rotation R then 
B = RA and the transition matrix is equal to A-1RA. 
Transition matrices of this form are rational only 
when associated with particular rotations or orienta- 
tions. We see that, once a structure matrix A is given, 
these rational transition matrices belong to a sub- 
group F of the group SL(n, Q) of rational matrices 
with determinant +1: F contains all the matrices of 
SL(n, Q) that are conjugate, by A, to some rotation 
R. F is usually infinite; it is isomorphic to a subgroup 
/ I  of the rotations O(n) that includes, in particular, 
the point group P; thus F contains the arithmetic 
group G defined above. 

Example. We consider the well known geometry 
of the 2 = 5 grain boundary in the (001) plane of a 
cubic lattice (Bacmann, Papon, Petit & Sylvestre, 
1985). The two-dimensional square lattice L~ is given 
by 

La = AZ2= [10 01 ] Z2. (I1.4) 

The second lattice L b is rotated with respect to L~ by 
a rotation R of angle cos -1 4/5-'-36.87 ° (see Fig. 1), 

,ii , 
Therefore B = RA and 

Lb = B Z  2 = ½ Z 2. (II.6) 

The (rational) transition matrix T = A-~B is given by 

341 
In one dimension, finding the intersection and sum 

lattices reduces to number-theoretic investigations: if 
La = a Z and Lb =/3Z denote two sublattices of Z 
with a and/3  positive integers then the intersection 
lattice, La n Lb = l.c.m.(a,/3)Z, is spanned by the least 
common multiple of a and /3 and the sum lattice, 
La + Lb = g.c.d.(a,/3)Z, is spanned by their greatest 
common divisor. 

In higher dimensions, finding explicit bases 
(equivalently, structure matrices) for the CSL and 
DSC lattices is not a trivial matter. We will give a 
procedure based on the Smith normal form. This will 
be achieved in three steps. Firstly, we restate Smith's 
theorem and mention some properties of the 
S-normal form (§ III.1). Next, given an arbitrary 
rational transition matrix T, we extract from it an 
integer matrix P (§ Ill.2). Translated into geometrical 
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language, the Smith form provides 'proportional '  
bases of the lattices La, Lb in terms of which finding 
the intersection and sum lattices reduces to a sequence 
of independent one-dimensional problems. Finally, 
the solutions are presented in § IV for the CSL and 
the DSC. 

III. Smith form of  the transition matrix 

1. Smith's  theorem 

The theory of the Smith normal form of integral 
matrices is given by, for example, Newmann (1972) 
and Hua Loo Keng (1982). We only give a short 
outline here. The principal result is given by the 
following theorem. 

Theorem. For any n x n integral matrix A, there 
exist modular  matrices U and V (matrices with 
integral entries and determinant + 1) such that U A V  
is a diagonal matrix A. Furthermore, if the rank of A 
is r, A can be found such that the only nonvanishing 
entries are the positive diagonal elements 
8 1 , 3 2 , . . . ,  8r that satisfy the property: 6 k divides 6k+ 1 

for k -- 1 to r - 1. Such a diagonal form is then unique. 

Outline o f  the proof. The procedure for transform- 
ing A into a diagonal matrix makes use of elementary 
modular matrices that perform the following oper- 
ations: 

(1) interchange of two rows (columns); 
(2) addition of n times one row (column) to 

another row (column). 
(3) multiplication of a row (column) by -1 .  
A first stage is the following: If al ,  a 2 , . . . ,  an are 

coprime integers (i.e. with g.c.d.--1), there exists a 
modular matrix U with first row (first column) equal 
to (al ,  a 2 , . . . ,  an). Consequently, if A has a first row 
(column) with g.c.d, equal to 3, one can find a 
modular matrix U such that A U (UA)  has its first 
row (column) equal to (3, 0 , . . . ,  0). 

Then the algorithm giving the Smith decomposition 
proceeds by induction on the dimension n. 

Using elementary modular  matrices, a nonzero ele- 
ment of A can be brought to position (1, 1). This 
element can be replaced by the g.c.d, of the first row 
and then by the g.c.d, of the first column so that it 
divides all elements of the first row and the first 
column. Then all other elements of the first row and 
column can be made zero. If the new element (1, 1) 
does not divide some other element ( i , j )  then add 
column j to column 1 and repeat the first step until 
the element (1, 1) divides all the other ones. At this 
point, we are left with an (n - 1)-dimensional problem 
that is handled in the same way. 

For any n x n integral matrix A, the determinantal 
divisors dk(A)  are defined for k = 0 ,  1 , . . . ,  n by 
do(A) = 1 and dk(A) is the greatest common divisor 
of all the k x k minors of A. In particular, we have 

dl (A)  = g.c.d.{A 0} and d, , (A)= det (A). It can easily 
be seen that dk-i divides dk. Now, if U and V are 
modular  matrices and if B- -UAV,  then d k ( A ) =  
dk(B); this follows from the Binet-Cauchy theorem, 
which implies that the k x k minors of B are integral 
combinations of k x k minors of A and vice versa. 
Applying this remark to A and its Smith normal form 
A, we find that the diagonal entries 6 1 , 8 2 , . . . ,  8, 
of A satisfy the relations 8~ = dl(A), 8182 = d 2 ( A ) , . . . ,  
8182 . . . 8,, = dn(A). 

Two conclusions can be drawn: (i) if one knows 
dk for k = 0, 1 , . . . ,  n, one can compute za by 6 k = 

dk/dk-~ (without the need to find U, V explicitly); 
(ii) as representative of equivalence classes of 
matrices, the factors dk are intrinsic characteristics of 
the relative orientation of the lattices, independent  
of the choice of a basis. 

2. The integral matrix 

If  T = A-1B  = ( T  o) has rational entries we can write 
T o = ro/so, where r o and s 0 are pairwise coprime for 
all i , j=  1 , . . . ,  n (the g.c.d, of r o and s o is 1). Let p` 
denote the least common multiple of all denominators 
s0; p` is the least positive integer such that p`T is an 
integral matrix (it is simply the common denominator  
of the fractions ro/s o, as would be used in evaluating 
their sum). Then p`T= P is a matrix with integral 
entries 

Po = p`ro/ so. (III.1) 

It is straightforward to check that p` is invariant under 
right and left multiplication of T by modular  matrices 
U and V: if T ' =  UTV, let p`' be the least positive 
integer such that p`'T' is integral; since p`T is integral, 
p`T' is also integral, which proves that p`'<-p`; con- 
versely, since p`'T' is integral, P ` ' T = P ` ' U - 1 T ' V  -1 is 
also integral, which proves that p`' -> p`, and so finally 
p.'-- p.. 

Furthermore, if La and L b have the same density, 
the greatest common divisor of all integers Po is equal 
to 1: indeed, if d divides all Po then d" divides 
det ( P ) = p ` " ;  consequently, d divides p` but, after 
r o / s o = ( P o / d ) / ( p . / d ) ,  the integer p`/d is a common 
multiple of all the denominators so; this finally 
implies d = 1 by definition of p`. Incidentally, this 
property, g.c.d.({ Pc}) = 1, also holds under the weaker 
condition that det (P)  does not contain any factor to 
the nth power. 

In the above example, p` = 5 and therefore 

We can now apply Smith's decomposition to P, 
that is P = U A V  -1, where U and V are modular  and 
za is diagonal with integer entries 8 1 , . . . ,  8, such that 
8k divides 8k+~ for k--  1 , . . . ,  n - 1 .  The transition 
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matrix is then 

T = A-1B  = la, - 1 U A V - k  (111.3) 

Since U and V are modular matrices, they merely 
correspond to changes of bases in the respective lat- 
tices: La = A U Z "  and Lb = BVZ" .  This amounts to 
defining new structure matrices A ' =  A U  and B ' =  B V  
and a corresponding transition matrix T ' = A ' - I B  ' 
given by 

A ' - I B ' =  ~ - IA .  (111.4) 

This matrix is, of course, still rational. The changes 
of bases are explicitly given by 

a~=AUe,=~. .  Uj, aj, b ~ = B V e , = ~ ,  Vj,bj (111.5) 
J J 

and these new bases are related by the elementary 
relations 

b', = (6,//z)a~. (III.6) 

Thus the Smith decomposition of the transition matrix 
yields bases of L~ and L b related by simple scalings, 
different in each direction. 

In the previous example the Smith decomposition 
P = U A V  -1 is provided by 

,] ° 0] ° 7] 
(111.7) 

The adapted bases (a') of L,, and (b') of Lb are given 
by a~ = 4al + 3aE, a~ = al + aE and b~ = b~, b~ = 7b~ + bE. 
The corresponding diagonal transition matrix gives 
(see Fig. 1) 

b ~ _ -  1 , 5al,  b~ = 5a~. 

IV. Intersection and sum lattices in R" 

The Smith normal form provides "proportional" bases 
(a') and (b') of La and Lb for which the transition 
matrix is diagonal with rational entries. In this case, 
for each i = 1 , . . . ,  n, we have p,a~ = q,b', with integral 
p, and qi (provided by p J q , = 6 , / p . ) .  Dividing 
this equality by 1.c.m.(p,,q,) we define e ,= 
[p,/1.c.m.(p,, q,)]a~=[q,/1.c.m.(p,,  q,)]b~. Then the 
one-dimensional lattices Za~ and Zbl are respectively 
a,Ze,  and/3~Ze~, where a, = l.c.m.(p,, q,)/p, and/3, = 
1.c.m.(p~, q,)/q~ are both integers. Their intersection 
and sum are obtained as in one dimension (see § 11.2). 
Finally, the intersection lattice La n Lb and the sum 
lattice L.. + Lb result as the direct sum of the one- 
dimensional components. 

The intersection lattice ( CSL)  

For each value of the index i we have to compute 
the intersection of Za~ with Zb~. Taking advantage 
of the rational relation 6,a ~ =/zb ~, it is straightforward 

to show that this intersection is spanned by the vector 

[6,/g.c.d.(p,, 6,)]a~ = [/x/g.c.d.(/z, 6,)]b~, (IV.l) 

where g.c.d.(/z, 6,) is the greatest common divisor of 
/x and 6,. Now let us define M and N as the diagonal 
matrices with integer entries: 

M,  = 6,/g.c.d.(/x, 6,) and N,  =/x/g.c.d.(/x, 6,). 

Since M ,  al = N,b~ for all i = 1 , . . . ,  n, we have A ' M  = 
B'N.  The intersection lattice is given by 

La n Lb = A ' M Z "  = B ' N Z " .  (IV.2) 

The corresponding structure matrix is therefore equal 
to A ' M = B ' N = A U M = B V N .  The index of the 
intersection lattice with respect to La or Lb is given by 

index [La n Lb, L,,] = index [L~ n Lb, Lb] 

= Idet (M)[ = Idet (N)I  

=/z" /11  g.c.d.(/z, 8,). (IV.3) 
'=1 

In the example the intersection lattice La n L b i s  

generated by a~ = 5b~ and 5a~ = b~. In terms of the 
initial basis we have a~ = (4, 3) and 5a~ -- (5, 5). Using 
elementary operations, we can obtain a simpler basis 
of L~ n Lb given by {(2, -1) ,  (1, 2)}. 

The sum lattice ( D S C  lattice) 

The computation of the sum is also straightforward: 
for each i = 1 , . . . ,  n, we have merely to compute the 
sum of the one-dimensional lattices Za[ and Zb~. Due 
to the rational relation between a', and b',, any vector 
in this sum is of the form 

ka ~ + Ib ~ = [ ( klz + 16,)/Ix ]a ~ = [ ( kl~ + 16,) /6,  ]b ~. 

Since the numerators of these fractions are all multi- 
ples of g.c.d.(/~, 6,), the sum lattice is spanned by the 
vector 

[g.c.d.(tz, 6,)//z]a[ = [g.c.d.(/z, 6,)/8,]b',. (IV.4) 

This vector is related to the M and N matrices intro- 
duced in the preceding section, 

I~__ b i .  (N, ,)- 'a ,  (M, , ) - '  ' 

The sum lattice La + Lb is therefore given by 

La + Lb = A ' N - l Z  " = B " M - 1 Z  ". (IV.5) 

This identity provides the structure matrix of the sum 
lattice as A ' N  -1 = B ' M  -1 = A U N  -1 = B V M  -~. The 
indices of either La or Lb with respect to the sum 
lattice are equal and given by 

index [ La, La + Lb ] = index [ Lb, La + Zb ] = Idet (M)I 

= det (N)I 

=/z"  g.c.d.(/z, ,5,) .  (IV.6) 
i= 
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Comparing with (IV.3), we can define the index Z to 
be any of the indices appearing in (IV.3) or (IV.6). 
All these equations are summarized in 

Z = ~"  g.c.d.(~, 8i). (IV.7) 
i 

There are situations where Z = ~, but this identity is 
not true in general (see the example in § VI.3 below). 
Equation (IV.7) always holds. In the above example 
the sum lattice L,, c~ Lb is generated by ~ ' 5a 1 = b~ and 
a~__l  t 562. Using the initial basis we have ~a[ = ~(4, 3) 
and a~= (1, 1). 

V. Decomposition of the transition into 
shear transformations 

1. The two-dimensional case 

In this section we show that if two lattices La and 
Lb of the two-dimensional plane have the same 
density, any rational transition matrix relating them 
is equivalent to a simple rational shear transformation 
that can be computed algorithmically. In the previous 
section we saw that Lo and Lb have structure matrices 
A'=AU and B'= BV such that the corresponding 
transition matrix T'= A'-~B'=/z-IA is rational and 
diagonal. Let 6~ and 62 denote the diagonal entries 
of A. By the definition of/x, the equal density require- 
ment implies that 6~ =g.c.d.({Pu} ) = 1 (see § III.2) 
and consequently 82=/z 2. Thus A is the diagonal 
integral matrix: 

A=txA,_IB,=[10 0 ] /z 2 . (V.1) 

Our purpose is to find new structure matrices A"= 
A'U' and B"= B'V' such that the corresponding 
transition matrix A"-IB " is a simple shear matrix S. 
The general form of a rational shear matrix is S = 
I+(m/p)ls)(o'[, using Dirac's bracket notations; s) 
and (o- are the irreducible lattice vector and 
reciprocal vector respectively and m, p are integers. 
S has unit determinant if and only if ( ( r l s )=  0, a 
condition that is assumed from now on. The action 
of S is given by 

Slx)=lx)+(m/p)(~[x)ls). (V.2) 

This transformation acts in the space of indices. By 
applying modular  transformations, we can always 
assume that s = e~ and o- = e2. Consequently, we shall 
consider shear matrices of  the form 

For two lattices to be related by such a shear transfor- 
• marion means that the equivalence class of transition 

matrices contains one of the specified form 

S= U'-I(I~-'A ) V'. (V.4) 

Putting these together, we must find the modular  
matrices U' and V' by solving 

1"] = ~ ( v . 5 )  

Multiplying this equation by/.i, shows that p must 
divide/x;  conversely, multiplying the equation by p 
shows that /x must divide p: therefore we have p =/x, 
which yields 

0 /x /z 2 (V.6) 

Thus the left-hand side of (V.6) has therefore the 
same Smith normal form A as A-~B. Obviously, m 
can be chosen in the interval ( - / x /2 ,  tx/2) since other 
values correspond to right multiplication by con- 
venient modular  matrices. Consequently, the only 
condition on m is that g.c.d.(m,/x) = 1, i.e. m and /x  
must be coprime (for instance, m = 1). Thus several 
shear matrices can be equivalent to /x-~A, which 
means that a variety of different shear transformations 
actually map La onto Lb. 

In any case, the modular  factor in S =  
U ' - I (~-~A)  V' induce corresponding structure 
matrices A"=  A' U' and B"=  B'V' such that 

S = A"-~ B"= [ 10 m~ lx 1. (V.7) 

Let (a") and (b") denote the corresponding basis of 
La and Lb. The above relation is then 

a l ,  b2 =a~ + (m//z)a~'. (V.8) 

The shear direction is given by the lattice vector 
A"el = A' U'e~ = a~' and the shear invariant subspace 
is the line generated by the same vector a~'. 

Remark. As already noticed, several equivalent 
shears map La onto Lb. Although the Smith form A 
of /zS is unique, the modular  matrices U' and V' are 
not uniquely defined. There exist pairs of modular  
matrices, P and Q, such that P-IAQ = A. Since A is 
regular, this equation is equivalent to Q = A-1PA so 
that Q is uniquely determined by P. Thus we can 
define the group H(A)  associated with A as the set 
of modular  matrices P such that Q(P) = A-~PA has 
integer entries. This is a subgroup of the modular  
group GL(2, Z). As a consequence, for each P in 
H(A) ,  we have as well 

s=u'-'P-'(~-'a)Ov'. 
In terms of the new structure matrices A"= A'PU' 
and B"=  B'QV', we still have S=A"-~B ", but the 
geometry might be different because it is referred to 
a different basis: for example, the shear direction is 
now A"el = A'PU'e~. In practice, it is convenient to 
choose (P, Q) so that the components of the vectors 
are small. 



778 C O I N C I D E N C E  LATTICES AND ASSOCIATED SHEAR TRANSFORMATIONS 

In the example of the /z  = 5 geometry, we have 

1] ['0 0] A ' =  A U  = and z~ = 25 " 

The shear matrices are of the form 

[10 m~51 S = , (V.9) 

where m is coprime to 5. The matrix P must satisfy 

We give the most simple solutions obtained for m = 
-2 ,  -1  and 1. 

(i) m = - 2 .  The Smith decomposition 5 S =  
U'-azaV ' is 

°,]['o 
For P =  

A" = A ' P U ' =  °1] 
The three-dimensional invariant plane of this shear 
is of type (3, 1, 0) and corresponds to a known mirror 
plane of the ,~ = 5 grain boundaries. However, for 

'1] 
and the invariant plane (670) is not a mirror plane. 

(ii) m - - - 1 .  The Smith decomposition is 

Setting P equal to the identity matrix, we get 

[9 1] 
A" = A ' P U ' =  1 " 

(iii) m = 1. The Smith decomposition is now 

1][ ,  01[, ° 101 . 

For P =  50 ' ' 

Notice that, in all cases, the first column of the A" 
matrix is a vector of the CSL. The invariant plane 
that is perpendicular to this vector sometimes is, and 
sometimes is not, a mirror plane, according to the 
choice of the shear vector, in (i) and (iii) each possi- 
bility is displayed. 

2. The general  n-dimensional  case 

We assume that La and Lb have the same density, 
which implies that the determinant of the transition 
matrices is equal to +1. The adapted bases (a') and 
(b') defined in §I I I  yield a rational and diagonal 
transition matrix T '= /z -~A and we have the relation 
/z n= 81 . . .  8~. We show in this section that La and 
L b c a n  be related by at most n -  1 elementary shear 
transformations. Moreover, each shear transforma- 
tion has a lattice direction, a rational amplitude and 
an invariant plane with integral Miller indices. The 
proof relies on a recursive procedure, depending on 
the dimension n, and a simple lemma relative to 2 x 2 
integral matrices, extending the result of the previous 
section. 

Lemma.  Let A be a 2 x 2 diagonal integral matrix 
with entries 81 and 82. Assume that there is an integer 
/.t such that 81 divides/z and/z  divides 82. Then there 
exist modular  matrices U and -V such that f = UA V 
is an upper triangular matrix with diagonal entries 
f i l l  = 8182/~ and f 2 2  = ~t£. 

Proof. Possible solutions for U and V are provided 
by the identity 

1 0 1 0 

(V.11) 

since p./81 and 82//z are integers. 

We can now state the following theorem. 

Theorem. Let A denote a diagonal integral n x n 
matrix with positive entries 8 1 , . . . ,  8n. Assume that 
8~ divides 82, . . . ,  8n-i divides 8~ and that 
8~82 . . .  8,, --/z n for some integer/x. Then there exist 
integral modular  n x n matrices U and V such that 
f - -  UA V is an integral upper triangular matrix with 
diagonal entries f ,  = p. for i = 1 , . . . ,  n. 

Proof  The proof proceeds by induction on the 
dimension n of the matrices. The result is obvious 
for n = 1 and the above lemma gives the proof  for 
n = 2 since 6182 =/z  2. Assume the result is true up to 
dimension n - 1  and consider an n x  n matrix zi 
satisfying the assumptions of the theorem. Since the 
sequence of diagonal entries is increasing, 81 divides 

and /z divides 8,. Use the above lemma to get a 
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new matrix with/.i, as the (n, n) entry 

I i°...°°!l °... 
• 1 . . .  0 6 2 . . .  

° .  . , .  

0 . . .  1 0 . . .  

~ /6~ 0 . . .  0 0 . . .  

0 1 . . .  0 

X °° .  

0 0 . . .  1 

- 1  0 0 

616,,/~ 0 

0 0 

0 

0 

_ -  [ D.-Io 

. . .  

6 2 . . .  

° °  

0 . . .  6,-1 

0 . . .  0 

61] .t 

Oi l 0 

6 ,  _ 1 

0 6, 

(V.12) 

Denote by U" and V" the left and right modular  
multiplies of ,5 on the first line of this equation. 

Now the submatrix D,_~ consisting of the first 
(n - 1) rows and the first (n - 1) columns is diagonal 
and integral. D,_ ~ is not necessarily in the Smith form 
but there exist (n - 1) x (n - 1) modular matrices U,_~ 
and V,_~ such that U,_~D,_I V,_~ = ,5.-1 is its Smith 
normal form. The product of the diagonal entries of 
A,_~ is det (,5,_~) = det (D,_~) =/x"-~; by the recur- 
rence hypothesis there exist (n - 1) x (n - 1) modular  
matrices U'  and V' such that U'A,,_~ V '=  3-,,_~ is an 
upper triangular matrix with diagonal entries equal 
to/~. Finally, 

U' V' 

/z * ••• * * ]  

] 

0 /x . . .  * * 

= • • ".. , (V.13) 

0 0 . • .  /x * 

0 0 .•• 0 /x 

where * denotes an unspecified entry. This completes 
the proof. 

The decomposition of a rational transition matrix 
into n - 1  rational shears is now straightforward. 

(1) The transition matrix is T -- A-  ~ B - 
i.t -~ U,SV -~, where ,5 is the Smith normal form of p,T. 

(2) For some modular  matrices U' and V', 
U' ,SV'= 9- is an upper triangular matrix with 

diagonal entries equal to /x ;  the diagonal matrix A is 
therefore equivalent to 3- and there exist structure 
matrices A" and B" such that A"-~B "= tz-~3-. 

(3) The modular  upper triangular ma t r ix /x -~3  " is 
the product of n - 1 rational shear matrices. 

The last point is a consequence of the fact that any 
triangular matrix M with diagonal entries 1 is equal 
to a product of n - 1  shear matrices: M =  
S n _ l . . •  SES  1 . For k =  1 , . . . ,  n, S k is the identity 
matrix except for the kth row, which is equal to that 

1 0 
° • 

of M. 

_ _  

. . .  . . .  

M k ,  k + l • • • 

" ,  

" , ,  

• . .  0 

0 

0 

1 

(V.14) 

In our case, Sk = I + [ek)(O'kl where ek is the kth vector 
of the standard basis and O'k is the covector defined 
by (O'k [ ei) =/X-~3-ki for i S  k and (O'k[ek)=O. 

VI. Applications in three dimensions 
In three dimensions the 
reads T' = / x -  ~ A, where 

0 l A =  62 0 . 

0 63 

diagonal transition matrix 

(VI.1) 

The coefficients satisfy ~/3= 6263 and 62 divides 63. 
Notice that, in distinction to two dimensions where 
it was uniquely determined by /x, the Smith matrix 
can take different forms in n -> 3 dimensions, accord- 
ing to the possible ways of factorizing /~'. We will 
characterize some in this section• 

We start with a classical result that can be recovered 
in a straightforward way by means of the Smith 
decomposition• 

1. Cubic lattices 

Assume L~ and Lb are cubic and that the structure 
matrices A and B are such that T -  A - 1 B  is a rotation 
with rational entries. T satisfies T ' T =  I (the super- 
script t denotes the transposed matrix) and, as a 
consequence, P = I ~ T  satisfies P t P = t x 2 I ;  the co- 
matrix P of  P satisfies pt/5 = det ( P ) I  =/.i,31, which 
implies /5 =/zP. Now the factor dE = • 1 6 2  = 62 is the 
g.c.d, of all  the 2 x 2 minors of P ; s ince  these minors 
are (up to a s ign )  the entries of P we conclude that 
62=g.c.d.({Pu})=/~ xg.c.d.({Po})=/x. Finally, 63 = 
/x 2 and the diagonal transition matrix is necessarily 

1 0 O] 
A =  0 /x 0 . (VI.2) 

0 0 /x 2 
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Then g.c.d.(/z, 8i) =/x for i = 2, 3 and formula (IV.7) 
for the index yields 2 =/z, a result proved by Grimmer 
et al. (1974) with an involved proof. 

It follows from the general results of § V that La 
can always be mapped onto Lb by two successive 
rational shears. The conditions under which the 
transition can be performed by a single shear are now 
given. 

2. The single-shear case 

In this case, structural matrices A" = A' U' and B" = 
B' V' can be found such that 

[ i  r e ~ P !  1 A"-I B " = S = 1 = U'-I(~-I A ) V', 
0 

where m and p are coprime integers. As in the two- 
dimensional case, multiplying this equation by tx or 
p shows that p =/z. Therefore A is the Smith form of 
the integral matrix [ m0] [ 00] 

i t 'S = 0 ~t~ 0 = U '-1 8 2 0 B ' .  

0 0 ~ 0 8 3 

Comparison of the elementary divisors of both sides 
yields: (i) m and /x are coprime and (ii) 82 is the 
g.c.d, of /zm and ix 2. This implies 82 =/z  and 83 =/z  2. 
Conversely, if the matrix A has diagonal entries 1,/z 
and /z  2, A is equivalent to /zS with m coprime to/x. 
Thus, this situation is completely characterized by A 
being of the form (VI.2). From (IV.7) we see that the 
index X is equal to/z.  

As a corollary, the expression (VI.2) for the A 
matrix in the case where cubic lattices correspond to 
each other by a pure rotation (without distortion) 
shows that the rotation is indeed equivalent to a single 
shear. This feature of rational rotations is very 
different from the general irrational ones where as 
many as four shears are generally necessary (Duneau 
& Oguey, 1991). 

3. The double-shear case 

As an example, we may define the structure 
matrices A and B as [20  1 Ea0 l 

A =  0 2 , B =  0 1 . 

0 0 0 0 

The transition matrix T is then 

T=A-1B=½ [i °°] 1 0 .  
0 8 

Therefore /z = 2 (albeit Z = 4 in this case) and the 
Smith form of 2 T is the diagonal matrix A with entries 
1, 1 and 8. A is equivalent to the matrix 2S, where 

[  lll °lrl °l 1 ½ 0 1 0 

S =  0 1 = 0 1 ½ 0 1 0 

0 0  0 0 1 d E 0 0 1  

is clearly a product of two simple shears and the 
Smith decomposition is 2S = U-~AV: 

2 1 0 

2 S =  0 2 1 

0 0 2 

[1001i!0 ][ 10 ] 0  2 
= 2 1 0 1 0 1 0 - 4  

0 2 1 0 8 1 0 0 

The adapted bases of La and Lb are given by the 
structure matrices 200] E21 ] 
A'= A U  = - 4  2 0 , B'= BV= - 4  0 . 

4 -2  1 4 0 

Then A'-IB '= S and the corresponding bases (a') and 
(b'), given by the columns of A' and B', satisfy the 
relations 

! 1 _ t ~ l _ !  b~ =a l ,  b~=a~+ a~, b~ = aa-r~a 2. 

4. An example in the hexagonal system 

The geometry of twins in the hexagonal system is 
more complicated than in the cubic system. The stan- 
dard basis of a hexagonal Bravais lattice La is given 
by the three-dimensional structure matrix 

a a/2 0 1 A= 0 a31/2/2 0 . (VI.3) 

0 0 c 

If B = RA is the structure matrix of Lb, the corre- 
sponding transition matrix is given by 

T = A - I B =  A-1RA. 

The condition for the existence of a CSL (or a 
DSCL) is that T has rational entries. We shall focus 
on the following solution, which, among others, was 
recently examined by Hag~ge (1991). The geometrical 
parameters are the following: 

7 1/2 (1) c/a has the value (~) . 
(2) the rotation R is specified by the rotation axis 

[0100] and the angle 0-~ 85.59 °, for which cos 0 = ~3 
(12~[7~al/2 and sin 0 = ~ j ~ g j  . 

The two-dimensional lattice La n P, where the 
plane P is perpendicular to the rotation axis, is 
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spanned by the vectors ~1 = [1070], of length a31/2, 
and O~ 2 = [0001],  of length c. In this plane the two- 
dimensional structure matrix A p  of La c~ P is 0] 
Thus al = Aeel and a2--Ap% where (el, e2) is the 
standard basis of the two-dimensional plane. Since 
Be = R A p ,  the two-dimensional transition matrix T = 
A-i, l Be  is easily computed from the above data, 

[ 
T =  fi L 12 " (VI.4) 

Similarly, Lb n P is spanned by 31 = Bpel  and f12 = 
Bee2. 

Of course,/~ = 13 and the Smith decomposition of 
p,T  = UA V -1 is 

The proportional bases of La and Lb in P are given 
by the structure matrices A~ = A p U  and B~ = BpV" 

we have a~ = t~l + 12a~2, o~ = o~ 2 and 3~ = ill, 3~ = 
14fll +fiE. The relationship between these two bases 
is given by: 

3~= laa~. 

The intersection lattice La n Lb in P is spanned by 
(a~, 13a~), while the sum lattice L,, + L b is spanned 
by (a~/13, t~). 

The relative orientation relationship can be 
described by a shear transformation associated with 
the shear matrix S, 

The Smith decomposition of the integral matrix ~S = 
U'- I  A V ' is 

[ ][ 0][1 °l["'01 t.~S= 13 1 1 
0 13 13 1 0 169 -1  

The structure matrices A" = A' U' and B" = B' V' give 
rise to the new basis 

Ot 1" = a l' - 1 3 a ~  = al  - a2, 

It 
Ol 2 --- O l~  = 0 1 2 ,  

3'( = 1 3 3 ~  - 3 ~ =  - 3 1 -  32,  

in which the shear transformation is described by 

3~' = a~', 3 ~ = a ' ~ + a ~ / 1 3 .  

The shear direction is given by a~' = a l -  o~2 = [1011]. 
Since the axis of the rotation is spanned by [0100], 
the invariant plane of the shear transformation is 
given by (1012), which is the twinning plane of the 
2 = 13 hexagonal system (Hag~ge, 1991). 

VII. Concluding remarks 

The shear decomposition of transition matrices 
between lattices of equal density seems to be a con- 
venient procedure to classify the relative orientations. 
In generic situations, four shears are required and we 
believe that particular cases where only one or two 
shears are sufficient are of physical interest. This is 
actually the case when the lattices and their relative 
orientation give rise to coincidence lattices and 
rational transition matrices. The shears involved in 
such transitions have the further advantage that their 
invariant planes provide natural candidates for the 
interface planes. The shear decompositions of the 
transition matrices between pairs of lattices are easily 
obtained by means of the theory of Smith normal 
forms. We have seen that the double-shear condition 
is fulfilled in all cases where a coincidence lattice 
exists, whatever the symmetry of the lattices. 

We are indebted to D. Gratias and S. Hag~ge for 
helpful discussions. 
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