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A representation method for grain-boundary character
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ABSTRACT
As is well known, a grain boundary (GB) is de® ned by ® ve macroscopic

parameters. We propose a method that is useful for representing the GB
properties of polycrystalline materials as a function of these ® ve parameters.
The properties might include distribution, energy, mobility, segregation and
wetting conditions. This method is based on the ìnterface-plane scheme’ ,
proposed by Wolf and Lutsko, where a GB is characterized by two interface-
plane normals and a twist angle (n1 ;n2 ;¿). Considering the equivalent GB
descriptions in cubic materials, the ìnterface-plane scheme’ space (n1 ;n2 ;¿† is
reduced to a unit triangle (100± 110± 111) for n1, a double unit triangle (100± 110±
111 and 100± 101± 111) for n2 and 0 4 ¿ < 2p. All equivalent GBs whose two GB
normals are within a given tolerance angle from reference planes are plotted as a
function of the twist angle ¿. This representation method is applied to the GB
distributions of an Fe± Mn± Cu polycrystalline alloy. As a result, signi® cantly high
frequencies of the GB distribution were observed at (111)(111) , S ˆ 3, and small-
angle boundaries.

} 1. INTRODUCTION
In order to characterize a grain boundary (GB), eight geometrical parameters are

needed. The eight parameters are divided into ® ve macroscopic parameters and three
microscopic parameters (Sutton and Ballu� 1995) . The ® ve macroscopic parameters
include information on the misorientation of two adjacent grains and the inclination
of the GB. The three microscopic parameters include information on the relative
translation of the two adjacent grains. We focus here only on the ® ve macroscopic
parameters.

Since the choice of the ® ve macroscopic parameters is arbitrary, three di� erent
schemes have been proposed. According to Bollmann (1970), a GB is de® ned by a
three-by-three misorientation matrix and a GB normal vector. In his scheme, only
three of the misorientation parameters are independent although the matrix has nine
variables. This description is very useful because it allows easy mathematical calcu-
lations. However, it is not the most convenient method for graphical representations
of GB properties. Since a rotation matrix can be converted to the rotation angle and
axis, a GB may also be de® ned by a misorientation angle and axis and a GB normal
vector (Goux 1974) . As discussed by Wolf and Lutsko (1989), it is di� cult to
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recognize the symmetries of GBs from this description, even if the GB is a simple
symmetric tilt GB. In view of these disadvantages , Wolf and Lutsko developed an
ìnterface-plane scheme’ where a GB is characterized by two GB normals with
respect to the crystal coordinate systems of each of the adjacent two grains, and a
twist angle. In their scheme, the GB symmetry with respect to tilt and twist character
is represented explicitly (Wolf and Lutsko 1989) .

Although the complete description of a GB requires ® ve macroscopic para-
meters, most experimental studies of GBs in polycrystalline materials have analysed
observed behaviour in terms of only three misorientation parameters (Haessner and
Sztwiertina 1992, Hirano et al. 1998) . This is because of the di� culty of measuring
GB inclinations in polycrystalline materials (Randle 1998) . However, analyses based
on three macroscopic parameters are incomplete. For example, it is well known that
S ˆ 3 GBs in fcc cubic metals prefer to be bounded by two (111) interfaces.
Molecular dynamic simulations have shown that the e� ects of inclination on the
S ˆ 3 GB energy are signi® cant (Shmid et al. 1998) . Ostuki and Mizuno (1986) have
also shown similar e� ects experimentally in Al bicrystals. Therefore, proper analysis
of GB properties in polycrystalline materials requires a complete description in terms
of all ® ve macroscopic parameters.

The objective of this study is thus to investigate a representation method for the
properties of GBs over the whole space of ® ve macroscopic parameters and to apply
the method to the GB distribution of an Fe± Mn± Cu polycrystalline alloy.

} 2. THEORY

2.1. Review of the ìnterface-plane scheme’
Since we shall adopt the ìnterface-plane scheme’ for the description of GBs, the

basis of the scheme (Wolf and Lutsko 1989) will be reviewed ® rst. We de® ne the two
grains on either side of a GB as grain 1 and grain 2. The GB is speci® ed by an
orthogonal matrix g of misorientation and a unit vector n normal to the GB. The
grain orientations g1 and g2 of the two grains are speci® ed by appropriate rigid-body
rotations with respect to the reference frame (Bunge 1982) . The misorientation D g is
written as

D g ˆ g1g
¡1
2 : …1†

Additionally, we specify the unit vector ns normal to the GB with respect to the
reference frame. The GB normal vectors n1 and n2 with respect to the grain 1 and
grain 2 frames are obtained by the following equations (note that one grain plane
normal is taken to point outward, and the other to point inwards) :

n1 ˆ g1ns ; …2 a†
n2 ˆ g2ns: …2 b†

Combining these equations, the GB is speci® ed by ( D g ;n1) (Bollman 1970) .
A misorientation D g is decomposed into two rigid-body rotations in the ìnter-

face-plane scheme’ as follows:

D g ˆ R…n1 ;¿†·R…nT ;Á†: …3†
Here, R…n1 ;¿) is referred to as a twist rotation, which is a rigid-body rotation about
the GB normal n1 by an angle ¿. R…nT ;Á) is referred to as a tilt rotation, which is an
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appropriate rigid body rotation about nT by an angle Á ( ® gure 1). The tilt axis nT,
which is perpendicular to n1 and n2, and the tilt angle Á are given by

nT ˆ n2 £ n1

jn2 £ n1j
: …4†

cos Á ˆ …n1 ¢ n2†:

Therefore, a GB is speci® ed by (n1 ;n2 ;¿) in the ìnterface-plane scheme’ (Wolf and
Lutsko 1989) .

2.2. Grain-boundary characterization by the ìnterface-plane scheme’
The misorientation D g is also described using a rigid-body rotation about the

rotation axis r by the misorientation angle ³ as follows (Synge 1960) :

D g ˆ R…r;³† ;

³ ˆ cos¡1 D g11 ‡ D g22 ‡ D g33 ¡ 1
2… †; …5†

r ˆ 1
2 sin ³

D g32 ¡ D g23

D g13 ¡ D g31

D g21 ¡ D g12

0
BB@

1
CCA:

Comparing equations (3) and (5), we obtain the following relations between ¿, Á
and ³ :
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Figure 1. Creation of a GB by the ìnterface-plane scheme’ (Wolf and Lutsko 1989), that is
successive applications of a tilt and a twist, where the twist axis is parallel to the
boundary plane normal and the tilt axis lies in the plane of the GB.



¿ ˆ cos¡1 2…1 ‡ cos ³†
1 ‡ cos Á

¡ 1… †; when
m
jmj ·n1 ˆ 1 ;

¿ ˆ 2p ¡ cos¡1 2…1 ‡cos ³†
1 ‡cos Á

¡ 1… †; when
m

jmj ·n1 ˆ ¡1;

m ˆ

h32 ¡ h23

h13 ¡ h31

h21 ¡ h12

0
BB@

1
CCA; …6†

where

h ˆ D g R…nT ;Á†¡1 ˆ R…n1 ;¿†:
Experimentally, a GB is characterized by g1, g2 and ns. Using equations (1), (2 a),
(2 b), (5) and (6), a GB (g1 ;g2 ;ns) is speci® ed by …n1 ;n2 ;¿† in the ìnterface-plane
scheme’ .

2.3. Review of grain-boundary symmetries
Since GB symmetries will be used to reduce the ìnterface-plane scheme’ space,

they will be reviewed here. The grain orientations g1 and g2 are equivalent to C1g1
and C2g2 respectively. Here, C1 and C2 are symmetry operations. Since the misor-
ientation D g is de® ned by g1g¡1

2 , D g is equivalent to C1 D g C¡1
2 . Therefore ( D g;n1) is

equivalent to (C1 D g C¡1
2 ;C1n1†. For centrosymmetric crystals, ( D g ;n1 ) is also

equivalent to ( D g ;¡n1†. Moreover, since the identi® cation of the two grains adjacent
to the boundary can be interchanged (A ! B, B ! A) without altering the bound-
ary, ( D g ;n1 ) is equivalent to ( D g¡1 ;n2 ). For the 24 proper symmetry operators in
cubic materials, the GB ( D g;n1) is equivalent to (4 £ 24 £ 24 ˆ† 2304 GBs
(Morawiec 1998) :

…D g ;n1† ˆ …C1 D g C¡1
2 ;C1n1† ; …7 a†

…D g ;n1† ˆ …C1 D g C¡1
2 ;¡C1n1† ; …7 b†

…D g ;n1† ˆ …C1 D g¡1 C¡1
2 ;C1 D g¡1 n1† ; …7 c†

…D g ;n1† ˆ …C1 D g¡1 C¡1
2 ;¡C1 D g¡1 n1†: …7 d†

Note that, independent of the choice of symmetry operators in this scheme, the
minimum misorientation angle, or disorientation angle, can be found by applying
equation (5) to …C1 D g¡1 C¡1

2 †. This leads, of course to a di� erent choice of C1 (and
C2 ).

2.4. Reduced space of the ìnterface-plane scheme’
In order to represent the GB properties graphically, the ìnterface-plane scheme’

space (n1 ;n2 ;¿) should be reduced by the use of the equivalent GBs reviewed in the
previous section. From equations (7 a) and (7 b), one of the products of n1 with
symmetry operations C1 or ¡C1 falls into a single unit triangle, such as (100± 110±
111). We de® ne the particular product that falls into a single unit triangle (100± 110±
111) as n*1. From equations (2 a) and (2 b), the GB normal vector n2 is written as
n2 ˆ C2 D g¡1 n*1. Therefore, n2 falls into a double unit triangle, consisting of (100±
110± 111) and (100± 101± 111). In the same way, from equations (7 c) and (7 d ), one of
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the products of D g¡1 n1 with symmetry operations C1 or ¡C1 falls into a single unit
triangle, such as (100± 110± 111). For the product of D g¡1 n1 with the particular
symmetry operation, n2 falls into a double unit triangle. Therefore, the ìnterface-
plane scheme’ space (n1 ;n2 ;¿) is reduced to a unit triangle (100± 110± 111) for n1, and
a double unit triangle (100± 110± 111 and 100± 101± 111) for n2, which requires con-
sideration of 0 4 ¿ < 2p.

2.5. Representation of grain-boundary properties
We shall now describe a method that is useful for representing GB properties as a

function of the ® ve macroscopic parameters extracted from polycrystalline samples.
First, the reference poles pi for the GB normal vectors n1 are selected in a single

unit triangle: (100± 110± 111). For our purpose, we selected 12 reference poles
pi …i ˆ 1;2; . . . ;12) ( ® gure 2 (a)). Second, the reference poles for the GB normal
vector n2 are selected in the ® rst unit triangle (100± 110± 111) and a neighbouring
second unit triangle (100± 101± 111). We selected 14 reference poles
qj …j ˆ 1 ;2 ; . . . ;14) in the double unit triangle ( ® gure 2 (b)). Here, pi equals qi for
i ˆ 1 ;2 ; . . . ;12. The reference poles in the second unit triangle should lie inside that
triangle because the poles along the borders of the second unit triangle are equivalent
to the corresponding poles on the borders of the ® rst.

After a GB is speci® ed experimentally by (g1 ;g2 ;ns†, all equivalent descriptions
in the tilt± twist decomposition scheme, (n1k ;n2k ;¿k ) (k ˆ 1;2; . . . ;2304) , are calcu-
lated. If the angles between n1k and pi and between n2k and qj , are smaller than a
preselected tolerance angle ­ , the GB (g1 ;g2 ;ns) is speci® ed by (pi ;qj ;¿k ).

According to the above discussion on equivalent GBs, the following combina-
tions of pi and qj are equivalent among all the possible combinations of pi and qj
(12 £ 14 ˆ 168 combinations in ® gure 2) :

(i) …h1 ;k1 ; l1†…h2 ;k2 ; l2† and …h2 ;k2 ; l2†…h1 ;k1 ; l1†, such as (111)(533) and
(533)(111) ;

(ii) (h1 ;k1 ; l1†…h2 ;k2 ; l2† and …h1 ;k1 ; l1†…h2 ; l2 ;k2†, such as (111)(321) and
(111)(312) ; here, …h1 ;k1 ; l1† lies on the border of the unit triangle.

(iii) …h1 ;k1 ; l1†…h2 ;k2 ; l2† and …h2 ; l2 ;k2†…h1 ; l1 ;k1†, such as (321)(713) and
(731)(312) ; here, …h1 ;k1 ; l1† and …h2 ;k2 ; l2† lie inside the ® rst and second
unit triangles, respectively.

Considering these 87 equivalent GBs, 168 ¡ 87 ˆ 81 combinations of pi and qj
are needed to represent the properties in the whole space of the GBs. This admittedly
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Figure 2. Reference poles for GB normal vectors.



coarse discretization of the space was adequate for an analysis of grain boundary
wetting. Other applications may require a more detailed discretization.

} 3. APPLICATION
The representation method described above is now applied to the GB distribu-

tion of an Fe± Mn± Cu polycrystalline alloy. In a previous study (Takashima et al.
1998) , we showed that the GBs in the microstructure are `wet’ (i.e. exhibit a con-
tinuous Cu ® lm), `dry’ (i.e. exhibit no Cu ® lm), or `mixed’ (i.e. partly wet and partly
dry). However, we focus here only on the GB distribution, without regard to the
wetting information. The analysis of the relation between wetting and the ® ve
macroscopic parameters will be discussed elsewhere (Takashima et al. 1999).

3.1. Sample preparation
Fe± 30 wt% Mn± 10 wt% Cu alloy samples 10 mm thick were cold rolled to 1 mm,

annealed at 11208C in evacuated quartz tubes for 5 h, and quenched.
To determine the ® ve macroscopic parameters of the GBs, not only adjacent

grain orientations but also the GB inclinations have to be measured. These were
investigated by electron back-scattering patterns (EBSPs) together with serial sec-
tioning, as described below.

The GBs and the Cu-rich wetting phase in the samples were revealed by chemical
polishing in 3% HF± 97% H2O2 followed by chemical etching in 5% HNO3 ±
95% C2H5OH. The microstructure was observed with a scanning electron micro-
scope, and grain orientations were determined with EBSP. After removing a surface
8 mm thick by mechanical polishing, microstructural and EBSP observations were
repeated on the same area. The thickness of the layer removed by polishing was
determined by the change in the size of microhardness indentations of known aspect
ratio, and registry between the ® rst and second sections was obtained by minimizing
the mean square deviations of 200 selected reference points. GB inclinations were
obtained by comparing GB positions on the ® rst and the second sections. Such data
were acquired for a total of 975 GBs.

3.2. Examples
The GB distribution was normalized by the distribution of 100 000 simulated

random GBs. The random GBs were generated by a combination of random mis-
orientations D g (Morawiec 1999) and random unit vectors n1.

The distribution of (pi ;qj ;¿) GBs are plotted as a function of ¿. Although 81
® gures are needed to represent the whole GB space, as discussed above, we show
only four ® gures as examples. The tolerance angle ­ has been taken to be 98 based on
the discretization described above.

The four graphs in ® gure 3 show examples of the GB distribution, in which the
bars represent the frequency of observations relative to the random GB distribution,
and lines show the calculated disorientation angle. As noted above, the disorienta-
tion angle was found separately from the interface-plane classi® cation, and was used
to identify small-angle boundaries. For (111)(111) ¿ GBs, the relative frequency of
the observed GB distribution to the random GB distribution was greater than 20 at
¿ ˆ 608, 1808 and 3008, which correspond to (111)(111), S ˆ 3, twin GBs. For
(110) (110) ¿ GBs, the frequencies were high at ¿ ˆ 08, 1808 and 3608, which corre-
spond to small-disorientation GBs. Although the GBs at ¿ ˆ 708, 1108, 2508 and
2908 are S ˆ 3 GBs, their relative frequencies were essentially zero. For (311)(311) ¿
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Figure 3. GB distribution displayed as frequency of observation relative to a random GB
distribution (bars), and calculated disorientation angles (line) for an Fe± Mn± Cu alloy.



GBs, the frequencies were high at ¿ ˆ 08 and 3608, which correspond to small-
disorientation GBs. In fcc metals, (311)(311), S ˆ 11 GBs (¿ ˆ 1808) are known
to display a low energy, like (111)(111), S ˆ 3 twin GBs. However, their frequency
was relatively low. No signi® cant high frequencies were found in (533)(530) ¿ GBs at
any twist angle.

} 4. CONCLUSIONS
A method that is convenient for the representation of GB properties in poly-

crystalline materials, as a function of the ® ve macroscopic parameters, has been
proposed. This method is based on the ìnterface-plane scheme’ , where a GB is
characterized by two interface-plane normals and a twist angle (n1 ;n2 ;¿).

(1) Equations, which allow calculation of all equivalent GB descriptions with
the ìnterface-plane scheme’ , have been provided.

(2) By considering equivalent GB descriptions, the ìnterface-plane scheme’
space (n1 ;n2 ;¿) is reduced to a unit triangle (100± 110± 111) for n1, and to
a double unit triangle (100± 110± 111 and 100± 101± 111) for n2 and
0 4 ¿ < 2p.

(3) All equivalent GBs with two GB normals which fall within a given tolerance
angle from reference planes were plotted as a function of twist angle ¿.

This representation method was applied to the GB distribution of an Fe± Mn± Cu
polycrystalline alloy. Whereas (111)(111), S ˆ 3 and (311)(311), S ˆ 11, GBs are
known to have low energies in fcc metals, our observations show that the relative
frequency of the (111)(111), S ˆ 3, GB was greater than 20, but that (311)(311),
S ˆ 11, GBs only appear at the same frequency as random GBs. In addition, high
frequencies were generally observed for small-disorientation-angl e GBs. Using this
method, the GB properties can be represented over the whole GB space, including
asymmetric GBs such as (533)(530) ¿.
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