
How to use MTEX to plot pole �gures and inverse pole �gures

Laurine Choisez, laurine.choisez@gmail.com

August 23, 2015

MTEX is a free Matlab toolbox for analyzing and modeling crystallographic textures by means of EBSD or
pole �gure data. This document only explains the basis of how to plot pole �gures and inverse pole �gures from
pole �gures data obtained by X-ray di�raction, with the mtex version 4.0.23. It has been highly inspired from
the MTEX toolbox documentation. To access this documentation and to download MTEX, go to http://mtex-
toolbox.github.io/. A link to the forum managed by the creator of MTEX, Ralf Hielscher, is included on the
site if you have any questions/problems with MTEX.

Contents

1 Import the data 2

2 Correct the data 4

3 Plot the data 5

3.1 Pole �gure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Inverse pole �gure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Annex: matlab code to convert .uxd �le from MultiTex2 to .uxd �le requested by mtex 8

1



1 Import the data

The data presented in this document have been generated by X-rays di�raction using the machine Bruker,
with a 2D detector to record the data. The sample to detector distance was of 162.5 mm, with 1024 x 1024
pixels active and two tilt conditions (25 and 75 degrees). The data were sampled with 1 degree resolution along
gamma angle. The data were then extracted by MultiTex2 to generate a .uxd �le for each pole �gure. MTEX
only accepts .uxd �les with a speci�c structure; a matlab code converting the .uxd �le coming from MultiTex2
into the .uxd �le requested by MTEX is given in Annex.

Figure 1: Three functions given by MTEX to import data.

(a) (b) (c)

(d) (e) (f)

Figure 2: Import pole �gure data

2



Download the toolbox, and install it. Three functions to import data should appear in matlab (see Fig. 1).
Click on "Import pole �gure data", a box should appear on the screen (Fig. 2(a)). Click on "+" and add your
uxd �les, then click on next. Fill the informations related to your material and click on "next" until the last
box, then click "Finish". Be careful at the step shown in Fig. 2(e) that your Miller indices correspond to your
pole �gure. Mtex tries to guess it from the name of your �le and a minus can be missing. When these steps are
completed, an m-�le script is generated. An example of this �le is given below.

%% Import Script for PoleFigure Data
%
% This script was automatically created by the import wizard. You should
% run the whoole script or parts of it in order to import your data. There
% is no problem in making any changes to this script.

%% Specify Crystal and Specimen Symmetries

% crystal symmetry
CS = symmetry('m-3m');

% specimen symmetry
SS = symmetry('triclinic');

% plotting convention
setMTEXpref('xAxisDirection','north');
setMTEXpref('zAxisDirection','outOfPlane');

%% Specify File Names

% path to files
pname = 'path_name_to_your_file';

% which files to be imported
fname = [pname '\PF100.uxd',

pname '\PF010.uxd',
pname '\PF001.uxd',
pname '\PF111.uxd'];

%% Specify Miller Indice

h = { ...
Miller(1,0,0,CS),...
Miller(0,1,0,CS),...
Miller(0,0,1,CS),...
Miller(1,1,1,CS),...
};

%% Import the Data

% create a Pole Figure variable containing the data
pf = loadPoleFigure(fname,h,CS,SS,'interface','uxd',...
'wizard');

You can change directly in this script the name of your .uxd �les and their Miller indices to import other
pole �gures or click again on "import pole �gure data" to create more scripts.

3



2 Correct the data

Once your pole �gures data are imported, you can plot them to see how they look like. The �gures obtained
are given in Fig. 3. To do so, just add:

plot(pf);
colorbar;

Figure 3: Pole �gures from the raw data.

Sometimes some artifacts appear during the X-ray di�raction measurements, showing incredibly high inten-
sities. In other to remove these artifacts, one can use the following code:

% Remove intensities higher than 900
condition = pf.intensities > 900;
% cap the values in the pole figures
pf(condition).intensities = 900;

Replace pf by pf({1}) if you want to limit this correction to the �rst pole �gure imported.

MTEX provides a function "correct" to reduce the error made during the measurement of the pole �gures
data. This function corrects the defocusing and the error on the background:

pf = correct(pf,'background',pf_background);
pf = correct(pf,'def',def_pf);

The background correction is just the substraction between the values of your pole �gure pf and the values of pf
background. pf background is a pole �gure containing the value of the background intensities (ie the incoherent
radiations). It can be made by generating a .uxd �le with the background value for each tilt angle (KHI) given
at one rotation angle (0 degree). The other rotation angles (from 2.5 to 357.5 degree) can be removed in the
code as they are all the same for the background correction. When plotting pf background, one should get a
line of intensity in the pole �gure (see Fig.4).

Figure 4: Pole �gure containing the background intensities to be removed in order to correct the main pole
�gure. See http://mtex-toolbox.github.io/�les/doc/ModifyPoleFigureData.html

These pole �gures are expressed in counts, depending on the amount of X-rays di�racted and recorded by
the detector. In order to compare several pole �gures, one should normalize them in m.r.d. (multiples of a
random distribution). This normalization express the regions of the pole �gures as a comparison with a random

4



one, in which all data would be 1. The regions with an intensity higher than one indicates that more lattice
planes are aligned in this direction than they would be in a random texture. The normalization can be done by
this function:

pf_norm = normalize(pf);

However, in the case of incomplete pole �gures, the normalization can only by computed from an ODF. This
is our case as one can see that the intensities between 80 and 90 degrees could not be recorded. The way to
normalize these incomplete pole �gure is to use the Orientation Distribution Function as explained in the next
chapter.

3 Plot the data

3.1 Pole �gure

A complete texture requires a 3D representation, and pole �gures only show a 2D projection of the texture so
some information is lost. In order to correctly stock all the information, a 3D-representation must be calculated.
This 3D-representation is called an Orientation Distribution Function or ODF. An ODF expresses the 3 rotations
needed to align each crystal with the specimen (the whole material) in a Euler space. An ODF can not be
directly measured and must be calculated from the pole �gures. The number of pole �gures needed to build
an ODF depends on the quality of the measurement and on the crystal symmetry. Only 3-4 pole �gures are
usually needed for a cubic crystal, 5-6 for an hexagonal one and more for systems with less symmetry. The
MTEX function to calculate an ODF is:

odf = calcODF(pf);

This function also take the ghost error into account. The ghost error is caused by the missing odd-order series
expansion coe�cients in the reconstruction of the ODF from the pole �gures, in the series expansion method.
The ghost error caused negative ghosts (missing intensities in ODF) or positive ghosts (added intensities).
One can check the accuracy of its ODF by plotting back the pole �gures from the ODF and by comparing them
with the original pole �gures.

plotPDF(odf,pf.h);
colorbar;

MTEX also supports the comparison between the ODF and the original pole �gures with the function
plotDi�, which plot the di�erence between the original pole �gures and the reconstructed ones from the ODF.

plotDiff(pf,odf);
colorbar;

One can see that the ODF is not perfect in our cases, by comparing Fig.5(a) and Fig.5(b), or by checking
the error in Fig.5(c). These errors are due to the fact that the crystal analysed is monoclinic and more than 3
poles �gures should be used to plot the ODF. If other pole �gures are not available and/or if one just wants to
use the function plotPDF to show the raw data in a smoother appearance, then the plotPDF function can be
used with an ODF constructed from only one pole �gure at a time. The ODF won't represent the real texture
of the material but the reconstructed pole �gure will look exactly like the original pole �gure (see Fig.7).

By clicking on the �gure, one can obtain the exact intensity in that region, and the angle de�ning this region.
After having plotted your pole �gure, one can also make some changements:

� : Change the range of the colorbar: Edit - Colormap;

� : Change the color of the colormap: MTEX - Colormap;

� : Change the orientation of the pole �gure: MTEX - X axis direction and select North South East or
West; MTEX - Z axis direction and select Out of plane or Into plane.

The orientation of the pole �gure can be indicated by using the function "annotate": it will indicate the
specimen orientations in the pole �gure.

plotPDF(odf,pf.h);
annotate([xvector,yvector,zvector],'label',{'X','Y','Z'},'BackgroundColor','w');
colorbar;

5



(a)

(b)

(c)

Figure 5: (a) Original pole �gures normalized (b) Reconstructed pole �gures from the ODF, calculated with the
3 pole �gures (c) Loss of information during the calculation of the ODF: di�erence between the original pole
�gures (a) and the reconstructed ones (b).

3.2 Inverse pole �gure

Inverse pole �gures can be plotted from the ODF by using this function (see Fig. 6):

plotIPDF(odf_norm_Stress,[zvector],'antipodal');
annotate([Miller(1,1,1,CS),Miller(0,1,1,CS),Miller(1,1,0,CS)],'label',{'(111)','(011)','(110)'},'BackgroundColor','w');
colorbar;

[zvector] will show the (001) inverse pole �gure (ie the intensities of all the cristallographic orientations in
the (001) specimen direction). One can also use [xvector yvector zvector] to plot the (100), (010) and (001)
inverse pole �gures, or even 3dvector(i,j,k) to plot the (ijk) inverse pole �gure.
Use the word "complete" to plot the entire inverse pole �gure, or the word "antipodal" to only plot the
fundamental region of the inverse pole �gure (to avoid the repetition in the inverse pole �gure due to the
antipodal symmetry). In our case, we have a monoclinic structure so the "antipodal" inverse pole �gure is half
a circle, but in the case of more highly symmetric structure the fundamental region of the inverse pole �gure is
reduced. For example, a cubic structure of order 48 has 24 equivalent points in the complete inverse pole �gure
(24 in the upper side of the complete inverse pole �grue and 24 in the lower side) so a twelfth of this circle is
su�cient to represent the inverse pole �gure. The usual fundamental region chosen for a cubic structure is one
of the inner triangles (see http://www.ebsd.com/popup/�gureset.htm?�g42).
The inverse pole �gure of a monoclinic and a cubic structure can be seen on the Fig. 6.

6



The function "annotate" allows one to indicate speci�c cristallographic orientations in the inverse pole �gure.
One can also click on the �gure once plotted to obtain these crystallographic orientations and their associated
intensity.

(a) (b)

Figure 6: Inverse pole �gure (a) Monoclinic structure (b) Cubic structure

7



(a)

(b) (c) (d)

(e) (f) (g)

Figure 7: (a) Original pole �gures. (b) to (d): Pole �gures reconstructed with an ODF calculated for each pole
�gures. (e) to (g): Loss of information during the calculation of each ODF.

4 Annex: matlab code to convert .uxd �le from MultiTex2 to .uxd

�le requested by mtex

function [] = PoleFigureTransfer()
% Read a .uxd file coming from Multitex 2, take the data and write them in another .uxd file
% that can be uploaded as a pole figure data into mtex.
% i is the number of matrices read (Data for Range number i).
i=0;
% Put the path to the first textfile
fid = fopen('C:\Users\Laurine\Dropbox\MIT\Texture\Pole figures data\Random002.uxd','r');
% Skip some unnecessary lines in the text
for a = 1:4

tline=fgetl(fid);
end
% Read the text until it is over
while feof(fid)==0

8



i = i+1;
% Memorise the Range
A(i,1)=i;
% Skip some lines
for a=1:6

tline = fgetl(fid);
end
% Save the KHI number (tilt angle)
for b=1:1

tline = fgetl(fid);
B = strread(tline,'%s','delimiter','=');
A(i,2) = str2double(B(2));

end
% Skip some lines
for a = 1:2

tline=fgetl(fid);
end
% j is the number of lines in the matrix for one Range (for a fixed KHI)
for j=1:18

tline = fgetl(fid);
A2 = strread(tline,'%d','delimiter',' ')';
indice = j+(j-1)*7+2;
A(i,indice:indice+7)=A2;

end
end
fclose(fid);
% Put the path and the name of the second file which must be save then as a .uxd
fileID = fopen('C:\Users\Laurine\Dropbox\MIT\Texture\Pole figures data\Random002.uxd','w');
format2 = '; E:\\data\\texture\\Zhangxinming\\lili\\Deepdrawing1_R.raw(Diffrac Plus V1.01 file) converted by XCH V1.0\n_FILEVERSION=2\n_SITE=''China''\n_USER=''Administrator''\n_GONIOMETER_CODE=3349\n; D8 Theta/Theta; Special\n_SAMPLE_CHANGER_CODE=0\n_ATTACHMENTS_CODE=0\n_GONIOMETER_RADIUS=250.000000\n_FIXED_DIVSLIT=0.600000\n_FIXED_SAMPLESLIT=0.000000\n_FIXED_DETSLIT=0.100000\n_MONOCHROMATOR=0\n; None\n_THIN_FILM=''N''\n_BETA_FILTER=''Y''\n_FIXED_ANTISLIT=0.600000\n_ANALYZER_CODE=0\n; None\n_DATEMEASURED=''24-Sep-2008 10:09:34''\n_WL_UNIT=''A''\n_WL1=1.540600\n_WL2=1.544390\n_WL3=1.392220\n_WLRATIO=0.500000\n_ANODE=''Cu''\n';
fprintf(fileID,format2);
formatSpec = '; (Data for Range number %d)\n_DRIVE=''PHI''\n_STEPTIME=1.000000\n_STEPSIZE=5.000000\n_STEPMODE=''C''\n_START=0.000000\n_THETA=17.200001\n_2THETA=34.400002\n_KHI=%d\n_PHI=0.000000\n_X=0.876000\n_Y=9.952000\n_Z=0.085500\n_DIVERGENCE=0.200000\n_ANTISCATTER=0.200000\n_DETECTOR=1\n; S.C.\n_HV=584.000000\n_GAIN=80.000000\n_LLD=0.494000\n_ULD=2.094000\n_DETECTORSLIT=''unkn''\n_AUX1=0.000000\n_AUX2=0.000000\n_AUX3=0.000000\n_TIMESTARTED=15.000000\n_TEMP_RATE=0.000000\n_TEMP_DELAY=0.000000\n_KV=40\n_MA=40\n_RANGE_WL=1.540600\n_3DPLANE=0\n_2THETACPS\n
0.0000 %d\n 2.5000 %d\n 5.0000 %d\n 7.5000 %d\n 10.0000 %d\n 12.5000 %d\n
15.0000 %d\n 17.5000 %d\n 20.0000 %d\n 22.5000 %d\n 25.0000 %d\n 27.5000 %d\n
30.0000 %d\n 32.5000 %d\n 35.0000 %d\n 37.5000 %d\n 40.0000 %d\n 42.5000 %d\n
45.0000 %d \n 47.5000 %d\n 50.0000 %d\n 52.5000 %d\n 55.0000 %d\n 57.5000 %d\n
60.0000 %d\n 62.5000 %d\n 65.0000 %d\n 67.5000 %d\n 70.0000 %d\n 72.5000 %d\n
75.0000 %d\n 77.5000 %d\n 80.0000 %d \n 82.5000 %d\n 85.0000 %d\n 87.5000 %d\n
90.0000 %d\n 92.5000 %d\n 95.0000 %d\n 97.5000 %d\n 100.0000 %d\n 102.5000 %d\n 105.0000
%d\n 107.5000 %d\n 110.0000 %d\n 112.5000 %d\n 115.0000 %d\n 117.5000 %d\n 120.0000
%d\n 122.5000 %d\n 125.0000 %d\n 127.5000 %d\n 130.0000 %d\n 132.5000 %d\n 135.0000
%d\n 137.5000 %d\n 140.0000 %d\n 142.5000 %d\n 145.0000 %d\n 147.5000 %d\n 150.0000
%d\n 152.5000 %d\n 155.0000 %d\n 157.5000 %d\n 160.0000 %d\n 162.5000 %d\n 165.0000
%d\n 167.5000 %d\n 170.0000 %d\n 172.5000 %d\n 175.0000 %d\n 177.5000 %d\n 180.0000
%d\n 182.5000 %d\n 185.0000 %d\n 187.5000 %d\n 190.0000 %d\n 192.5000 %d\n 195.0000
%d\n 197.5000 %d\n 200.0000 %d\n 202.5000 %d\n 205.0000 %d\n 207.5000 %d\n 210.0000
%d\n 212.5000 %d\n 215.0000 %d\n 217.5000 %d\n 220.0000 %d\n 222.5000 %d\n 225.0000
%d\n 227.5000 %d\n 230.0000 %d \n 232.5000 %d\n 235.0000 %d\n 237.5000 %d\n 240.0000
%d\n 242.5000 %d\n 245.0000 %d\n 247.5000 %d\n 250.0000 %d\n 252.5000 %d\n 255.0000
%d\n 257.5000 %d\n 260.0000 %d\n 262.5000 %d\n 265.0000 %d\n 267.5000 %d\n 270.0000
%d\n 272.5000 %d\n 275.0000 %d\n 277.5000 %d\n 280.0000 %d\n 282.5000 %d\n 285.0000
%d\n 287.5000 %d\n 290.0000 %d\n 292.5000 %d\n 295.0000 %d\n 297.5000 %d\n 300.0000
%d\n 302.5000 %d\n 305.0000 %d\n 307.5000 %d\n 310.0000 %d\n 312.5000 %d\n 315.0000
%d\n 317.5000 %d\n 320.0000 %d\n 322.5000 %d\n 325.0000 %d\n 327.5000 %d\n 330.0000
%d\n 332.5000 %d\n 335.0000 %d\n 337.5000 %d\n 340.0000 %d\n 342.5000 %d\n 345.0000
%d\n 347.5000 %d\n 350.0000 %d\n 352.5000 %d\n 355.0000 %d\n 357.5000 %d\n' ;
fprintf(fileID, formatSpec, A');
fclose(fileID);

end

9


	Import the data
	Correct the data
	Plot the data
	Pole figure
	Inverse pole figure

	Annex: matlab code to convert .uxd file from MultiTex2 to .uxd file requested by mtex

