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Abstract

Bi,Sr,Ca,_1Cu, 0541245 (n = 1,2, 3) thin films are prepared on c-axis oriented and vicinal substrates by pulsed-laser
deposition. Optimization of substrate temperature, laser fluence and post-annealing conditions produces single-phase,
well-oriented and smooth films. The surface morphology, texture, crystallinity and stoichiometry of Bi,Sr,CaCu,Og, 4
(Bi-2212) thin films strongly depend on the fabrication parameters. On (00 1) SrTiO; substrates, c-axis oriented Bi-2212
films with J. (60 K) =2 x 10° A/cm? and T,y = 82 K are obtained. Vicinal Bi-2212 films grown on miscut substrates
reveal anisotropic resistivities independent of film thickness (20-300 nm), high J; anisotropy and strong in-plane and
out-of-plane texture. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 74.76.Bz; 74.72.Hs; 81.15.Fg

Keywords: Bi-based cuprates; Vicinal thin films; Pulsed-laser deposition

1. Introduction

The Bi,Sr,Ca,_1Cu,Ox,12)45 high temperature
superconductor (HTS) is very important for fun-
damental investigations and technical applica-
tions. Bi,Sr,Ca,_;Cu,0x(y12)+s (BSCCO) has high
critical temperatures (7o ~85 K (n=2) and
Te ~ 110 K (n=3)) and high critical current
densities at low temperature and is used for the
fabrication of long lengths HTS tapes. The strong
anisotropy of this compound and the easy inter-
growth of different phases has challenged several
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groups to grow thin films with well-oriented and
single-phase structure. Different techniques such
as molecular beam epitaxy (MBE) [1,2], metal-
organic chemical vapor deposition (MOCVD) [3,
4], sputtering [5-9], liquid phase epitaxy (LPE) [10]
and pulsed-laser deposition (PLD) [11-13] (n =
1,2), [14-18] (n = 2), [19-22] (n = 2,3) have been
employed. In particular, PLD allows to adjust
preparation parameters independently and to
deposit films of complex stoichiometries with rel-
atively high deposition rates [23]. REBa,_,Sr,-
Cu;0;_; films (RE is rare earth) grown by PLD
reveal different film orientation, surface morpho-
logy and electrical and superconducting proper-
ties depending on the parameters employed [24].
For the deposition of BSCCO thin films additional
complexity arises from possible phase mixture
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and oxygen overdoping. Vicinal Bi,Sr,CaCu,0Og,
films have been grown on slightly miscut sub-
strates to investigate the anisotropic transport
properties [25,26] and the intrinsic Josephson effect
[27] and to achieve a—b untwinning [28]. We have
systematically varied the vicinal angle and ob-
tained oriented growth for angles < 15° [29]. The
anisotropic resistivities were in very good agree-
ment to single crystal data for film thickness in the
range 20-300 nm [30].

In this paper the PLD of Bi,Sr,Ca,_Cu,-
Ox(n42)+5 (n =1-3) thin films on c-axis oriented
and vicinal substrates is reported. The laser flu-
ence, growth temperature and post-annealing
conditions are optimized to achieve single-phase,
well oriented and smooth Bi,Sr,CaCu,0s,s films
with high T, and J. values. Phase pure and ori-
ented (Bi,Pb)zSI‘zC&zClhO]()Jr(s and BizerCu06+5
films are produced on c-axis oriented substrates.
Vicinal Bi,Sr,CaCu,0g,s films are strongly tex-
tured and reveal markedly different electrical and
superconducting properties as compared to vicinal
YB32CU307,5 films.

2. Experimental

Bi,8r,Ca,_1Cu,Os(n12)4+s films with »n=1-3
were prepared by PLD using Bi,Sr,CuOg,s,
BiZSrzCaCu208+5, and (Bi,Pb)zSI’zcazCU3010+5
ceramic targets, respectively. The target stoichio-
metries were Bi:Sr:Ca:Cu = 2.01:1.98:1.08:1.98
(n =2) and Bi:Pb:Sr:Ca:Cu = 1.85:0.35:1.90:2.05:
3.05 (n =3) as measured by EDX (uncertainty
+5%). The relative target densities were 76%
(n=1),69% (n = 2) and 92% (n = 3). For ablation
KrF excimer-laser radiation (4 = 248 nm, 7 =2 25
ns, Epuse <17, 1-2 Hz repetition rate) was focused
onto the target surface. Circular spots of uniform
laser fluence were achieved using an aperture (dia-
meter 14 mm) and a lens system (focal length 200
mm). Spot size was 2.3 mm?. For homogeneous
target ablation and suppression of cone formation
the targets were rotated and scanned simulta-
neously [31]. Laser ablation was performed in
oxygen atmosphere.

BSCCO films were deposited on c-axis oriented
and vicinal SrTiO; and (00 1) MgO substrates. The

vicinal angle between substrate c-axis and surface
normal was Og < 25°. The substrates were mounted
parallel to the target surface at a distance drs = 58
mm. Typically, 160-2500 laser pulses were em-
ployed for deposition. For electrical characteriza-
tion by four-point measurements films were
patterned (bridges 25 pm x 800 um) using pho-
tolithography and wet-chemical etching (1-10%
HNOs;). Etching deteriorated the film properties
and oxygen annealing (~700°C, 1.2 mbar oxygen,
1 h) was employed to restore the film quality.

3. Results and discussion
3.1. c-axis oriented Bi;Sr;Cay_;Cuty Osni2)45 films

Bi,Sr,CaCu,05,5 (Bi-2212) thin films were
grown on (001) SrTiO3 and (001) MgO substrates
for different substrate temperatures, laser fluences
and post-annealing conditions. In first experiments
the substrate temperature was varied in the range
Ts = 760-810°C. Laser fluence & = 3.25 J/em?,
oxygen background pressure p(O,) = 2.5 mbar,
and number of laser pulses N = 800 were kept
constant. After deposition in situ post-annealing
was performed at 75 = 770°C and p(O;) =1.2
mbar for 90 min (MgO) and 120 min (SrTiOs3),
respectively. All films of this series were c-axis
oriented and revealed a single-phase XRD pattern.
The c-axis length was ¢ = 30.81 £0.03 A in good
agreement with single crystal data [32]. Formation
of the Bi-2201 phase was observed for 75 < 750°C
and at temperatures 7g > 810°C the films became
unstable. The decomposition of Bi-2212 films at
the high temperatures is in agreement with results
on phase stability investigations of bulk Bi,Sr,-
CaCu,0g4.5 [33]. The transition temperature T
increased with increasing deposition temperature
and reached a maximum at 7g = 780°C (Fig. 1). At
higher temperatures the T, was different depend-
ing on the substrate. The onset critical temperature
was in the range 90-95 K independent of 7s. The
increase of Ty for Ts < 780°C is attributed to en-
hanced surface diffusion of species and improved
phase formation. On MgO substrates, the decrease
of Ty for Ts > 780°C may be due to internal strain
[6] originating from large lattice mismatch and
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Fig. 1. Critical temperature 7y of c-axis oriented Bi-2212 films
deposited at different temperatures 75 on (001) SrTiO; and
(001) MgO substrates. Laser fluence and oxygen pressure were
3.25 J/cm? and 2.5 mbar, respectively. Film thickness was 100
nm.

different thermal expansion coefficients. The mis-
match was 9.9% and ~40% for the lattice para-
meters and the thermal expansion coefficients [34],
respectively. For SrTiO; substrates, the mismatch
was 2.3% and ~6% [34], respectively.

In a second series of experiments, Bi-2212 films
were grown at fluence @ = 1.5-4.5 J/cm? and sub-
strate temperatures 75 = 780°C (MgO) and Ts =
790°C (SrTiO;). Parameters kept constant were
p(0,) =2.5 mbar, N =800 and post-annealing
conditions p(O,) = 1.2 mbar, Tg = 770°C, 120 min.
Formation of cracks on the target surface was ob-
served for @ > 4.5 J/cm? and ablation was stopped
to avoid target fragmentation. At the lowest flu-
ence employed films were strongly non-stoichio-
metric showing Bi and Ca enrichment and Cu and
Sr depletion. At higher fluences (2.5-4 J/cm?) both
the enrichment and the depletion of different ele-
ments decreased and stoichiometry was Bi:Sr:
Ca:Cu =2.1:1.9:1.2:1.8 (uncertainty +10%) for
3.25 J/cm?. Enrichment of Bi in laser deposited Bi-
2212 films was reported previously [35]. Fig. 2
shows the dependence of Ty, J. and particulate
formation on laser fluence. A strong increase of T
with increasing fluence was observed and Ty > 82
K was obtained for @ > 3 J/cm?. The critical cur-
rent density showed a moderate fluence depen-
dence for films grown on SrTiO; substrates. For
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Fig. 2. (a) Critical temperature T and critical current density
J. (40 K) of c-axis oriented Bi-2212 films deposited at different
laser fluences. (b) Film surface coverage and particulate density
for different fluence. The inset shows the particulate diameter
histogram for a Bi-2212/SrTiO; film of 200 nm thickness.

@ = 3.25 J/em?, the current density was 1 x 107,
6 x 10%and 2 x 10% A/cm? at T = 20, 40 and 60 K,
respectively. On MgO substrates, the J, was much
lower and revealed a strong dependence on fluence.
Particulates on the films consisted of droplets, ir-
regularly shaped particles and outgrowths. The
density of particulates with diameter > 100 nm
was 3 x 10° cm™2 for @ = 3.5 J/ecm? and increased
for lower and higher fluence. The surface coverage
showed a minimum of 0.2% at the same fluence
level. The large coverage at low fluences was mainly
due to the formation of large outgrowths. At 3.5 J/
cm? fluence only few particulates had diameters >1
pm (inset Fig. 2). The formation of particulates
has been extensively studied for different target
and substrate materials and PLD systems [36].
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Particulates are formed mainly by the ejection of
particles from the target and the growth of precip-
itates on the film. Vapor phase condensation pro-
duces clusters which are typically smaller than 20
nm in diameter [24]. A strong fluence dependence
of T,y and J, was observed also for YBa,Cu;O;_;
(YBCO) layers [37]. Different mechanisms related to
the ablation process, gas phase interactions and
desorption from the film surface may contribute to
the observed behavior. The energy, chemical state
and stoichiometry of film-forming species and the
deposition rate vary with fluence. The observed
dependence of J. on the substrate material is

attributed to a different film texture and morphol-
ogy. Good in-plane alignment of films was ob-
served on SrTiO; substrates but multiple in-plane
orientations developed on MgO [6]. Relatively
smooth films with a surface roughness Ay, =2 10
nm, grain size around 300 nm and a low particulate
density were obtained on SrTiO; (Fig. 3a and c).
On MgO substrates, Bi-2212 films had Ay, = 15
nm and many micro-cracks with widths < 100 nm
and depths comparable to the film thickness (Fig.
3b).

For Bi-2212 films grown at ® = 3.25 J/cm?,
Ts = 790°C and p(O,) = 2.5 mbar the deposition

Fig. 3. Topography of Bi-2212 films deposited on (001) SrTiO; (a, c¢) and (00 1) MgO substrates (b). AFM images (a, b) show crack
formation for films grown on MgO. The surface roughness is ~10 nm and ~15 nm for SrTiO; and MgO substrates, respectively. The
SEM image (c) reveals a low particulate density of ~ 3 x 10® cm~2 . This image was taken at an angle of 45°.
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Fig. 4. In situ post-annealing of c-axis oriented (0s = 0°) and
vicinal (s = 10°) Bi-2212 films at 770°C in 1.2 mbar oxygen. At
higher angles 0s the Ty of films deposited under optimized
conditions only slightly decreases (closed symbols, inset).

rate was ~1.2 A/pulse. Such films had T, < 60 K
when cooled to room temperature with a rate of
20°C/min after deposition. In situ post-annealing
of c-axis oriented (As = 0°) and vicinal (65 = 10°)
Bi-2212 films for 120 min increased the critical
temperature up to >80 K (Fig. 4). Prolonged
annealing (120-300 min) only moderately in-
creased Tyy. Very long heat treatment ( = 400 min)
decreased Ty and films were non-superconducting
after 12 h. XRD measurements revealed improved
signal/background ratio and reduced widths of
(0017) reflections of annealed films. Qualitatively
the same results were achieved for films on MgO
and SrTiO; substrates.

The phase-pure growth of Bi-2212 films on
MgO substrates within a narrow temperature
range is in qualitative agreement to earlier results
[12]. Zhu et al. reported T, = 71 K and J. (50 K)
~ 8 x10° A/ecm? for films deposited at & ~ 2
Jlem?, Ts ~ 740°C and p(O,) = 0.2 mbar, and
rapidly cooled after deposition without post-
annealing. Our results demonstrate that in situ
post-annealing and the optimization of laser flu-
ence and substrate temperature are required to

increase the critical temperature T > 80 K, to
strongly reduce the particulate formation and to
improve the film crystallinity. c-axis oriented Bi-
2212 films on SrTiOj; substrates reveal improved
texture, surface morphology, and J. values as
compared to films grown on MgO. The T, and J,
values of Bi-2212/SrTiO; films are comparable to
results reported by Arnold et al. [16].
(B1,Pb),Sr,Ca,Cus0y, 5 (Bi-2223) targets were
used for the deposition of Bi-2223 films on (001)
MgO substrates. The deposition temperature was
varied in the range 75 = 740-810°C. Laser fluence
@ = 3.25 J/em? and oxygen background p(O,) =
2.5 mbar were employed. Fig. 5 shows details of
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Fig. 5. XRD patterns of BSCCO films deposited at different
substrate temperatures using a (Bi,Pb)-2223 target for ablation

(® = 3.25 J/cm?). The solid and dotted lines represent Lorentz
profile fits of the Bi-2223 and Bi-2212 reflections, respectively.
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the XRD patterns (Cuk,) of c-axis oriented films.
In the range 21°<20<30° up to five (00/)
reflections of different BSCCO phases are ob-
served. For temperatures 75 = 740-770°C Bi-2223
is the dominant phase and (0010) and (0012)
reflections are detected at 20 = 24.03° and 28.67°,
respectively. The peak at 27.3° is due to the sample
holder. At higher temperatures phase competition
occurs and Bi-2212 formation is increasingly en-
hanced. A minor amount of Bi-2201 phase is ob-
served for temperatures 7s = 790-800°C ((006)
peak at 20 = 22°). The Bi-2234 phase was not
formed. The solid and dotted lines are Lorentz
profile fits for the Bi-2223 and Bi-2212 phases,
respectively. The measured Bi-2223 peak positions
differ slightly from literature data (20(010) =
23.92° and 209012y = 28.80° [38]) depending on
deposition temperature. This is probably due to
phase intergrowth introducing stacking faults
and structural modification along the film c-axis
[5,10], non-optimized oxygen stoichiometry and
Pb doping.

In further experiments the laser fluence and the
oxygen pressure were varied (p(O;) = 0.3-3.3
mbar, & = 1.5-4.5 J/cm?®) to produce stoichio-
metric Bi-2223 films with metal-like resistivities in
the normal state. Substrate temperature was 7g =
730-760°C. For ® =2.9 J/cm? and p(0,) = 1.6
mbar the stoichiometry was very close to target
composition and films revealed metallic resistivity
behavior with T,o =26 K. Films cooled in 100
mbar oxygen after deposition (p(O,) = 2.5 mbar,
Ts = 740°C) had Ty = 63 K. Ex situ annealing in
air at 820°C for 10 min further raised the transi-
tion temperature (I°"" = 118 K, Ty = 78 K) and
strongly reduced the residual resistance R/
R300 k = 0. Fast heating and cooling ramps were
employed to avoid Pb and Bi evaporation and
film decomposition [39]. After annealing the c-axis
lattice parameter was 37.11 £0.07 A. This value
was slightly less than for optimally oxygen doped
Bi-2223 (¢ = 37.17 A [38]). The Bi-2223 films had
particulate density of ~10%/cm?, surface coverage
of 6.5% and an average particulate diameter of
250 4+ 30 nm.

Bi,Sr,CuOg,5 (Bi-2201) films were deposited
from Bi-2201 targets employing @ = 2.9 J/cm?,
p(0;) = 2.5 mbar and Ty = 740°C. Higher depo-

sition temperatures favored Bi-2212 phase for-
mation. Bi-2201 films grown on (001) MgO
substrates revealed c-axis orientation. The lattice
parameter ¢ = 24.60 £+ 0.10 A was slightly reduced
as compared to single crystals (¢ = 24.70 A [40]).
This indicates overdoping since no annealing
was employed after deposition. For temperatures
above 50 K the films revealed metallic resistivity
behavior with a residual resistance R.s/Rzp k ~
0.65. The critical temperature was 7" ~ 17 K
and T, < 10 K.

3.2. Vicinal Bi;Sr;CaCu,0g. 5 films

Vicinal Bi-2212 films were grown on miscut
SrTiO; substrates employing the same parameters
as for c-axis oriented film growth. Post-annealing
increased the critical temperature to 78 and 82 K
after 70 and 200 min treatment, respectively (Fig.
4). The annealing times required for high T, were
much longer than estimates considering aniso-
tropic oxygen diffusion in Bi-2212 (diffusivities
Dgay/De ~ 40 at 770°C [41]). For films of thickness
h the diffusion path length was /,,h ~ sin 65 and
annealing times less than 1 min were expected
(tl?, ~ D). The long-term annealing probably
improved film crystallinity as was observed for
non-tilted Bi-2212 films. Oxygen diffusion of post-
annealed vicinal films revealed thermally activated
behavior at lower temperatures (230-380°C) [42].
The critical temperature of vicinal films slightly
decreased for higher tilt angles, T,(0s = 0°) = 85
K, Ty(0s = 10°) = 81 K and T(0s = 20°) = 78 K
(inset Fig. 4). Films deposited under non-opti-
mized conditions (T = 775°C, & =2.35 J/cm?,
spot size 1 mm?, drs = 35 mm) showed a much
stronger suppression of the critical temperature,
Too(0s = 0°) =82 K, Ty(0s =10°) =50 K and
T.o(0s = 20°) = 35 K. The particulate density and
surface coverage on vicinal films were ~5 x 10°
cm~? and 0.06%, respectively.

The crystallinity of vicinal films (65 = 10°) was
investigated by XRD rocking curves (w- and
¢-scans). Fig. 6 shows w-scans of the (0010) Bi-
2212 reflection for different film thickness and
in-plane sample orientation. The scan angle w =
0 — Oprage Was measured relative to the Bragg angle



R. Rossler et al. | Physica C 361 (2001) 13-21 19

XRD INTENSITY [a.u.]
o

o [deg]

Fig. 6. XRD rocking curves of the (0010) reflection of vicinal
Bi-2212 films for different sample orientations (¢) and film
thickness. For ¢ = +90° the peak intensities are observed at
w ~ *0g due to the substrate tilt.

Oprage = 23.26°. For sample orientation ¢ = 0°, the
film steps were aligned parallel to the plane of in-
cidence and peaks of scattered intensity /(w) were
detected at w = 0°. The rocking curve half widths
were Awpwym = 0.61 +0.10° independent of film
thickness in the range 20-300 nm. The width
agreed well with measurements on c-oriented films
(Awpwuam = 0.65°). For ¢ = +£90°, peak intensities
were measured close to the nominal substrate
tilt at w = £(10.90 £ 0.33)°. Half widths were
Awpwam = 0.78°, 0.92° and 1.22° for film thick-
ness 2 = 300, 150 and 100 nm, respectively. For
thinner films (<70 nm) the rocking curves re-
vealed an additional peak of lower intensity. Peak

positions were at = £(11.44+£0.08)° and
® = £(9.86 £ 0.11)°. The second peak may be due
to a slight change of c¢-axis orientation across anti-
phase boundaries as was observed for 15° vicinal
films [43]. For all sample orientations the inte-
grated scattering intensity, [/(w)dw, increased
linearly with film thickness. The in-plane orienta-
tion of the Bi-2212 lattice was determined from ¢-
scans of the (2010) Bi-2212 and (101) SrTiO;
peaks, respectively. A 45° rotation relative to the
substrate and very strong in-plane texture were
measured (Appwam = 0.66°, Fig. 7). These results
demonstrate the tilted structure of step-flow grown
films and confirm results based on resistivity mea-
surements and TEM investigations [30].
Resistivities and critical currents of vicinal Bi-
2212 films were measured for current tracks ori-
ented parallel and perpendicular to the vicinal
steps (0s = 10°). From four-point measurements
the in-plane and out-of-plane resistivities p,, and
p. were derived which agreed well to single crystal
data [30]. The variation of p, due to moderately

—e— (2010) Bi,Sr,CaCu,0,,, h = 150 nm

14 . ° e &
— [ ] I.\
2 I i
S, o
> 44 45 46
=
%)
Z
Lu L
E D
= 014 .
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ST l

0= ' 7y 7
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Fig. 7. XRD ¢-scans of the (2010) Bi-2212 and (101) SrTiO;
reflections. The vicinal Bi-2212 films show a 45° in-plane rota-
tion relative to the substrate lattice.
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Fig. 8. Magneto-optical image of a 10° vicinal Bi-2212 film (7 = 4.2 K, B.x = 16 mT). The critical current anisotropy is derived from
the angle « between discontinuity line and sample edge (indicated by solid lines).

different c-axis orientations was within the scatter
for different films of the same thickness. The criti-
cal current densities showed strong anisotropy for
measurements parallel (J.p) and orthogonal (J.o)
to the vicinal steps. In zero field, J.p(20 K) =
4x10° A/em? and J.0(20 K) =3 x 10° A/cm?
were measured for films of 120 nm thickness. The
current density J.p is comparable to J,(20 K) =
1 x 107 A/cm? measured on c-axis oriented films.
The resistivity anisotropy and critical current an-
isotropy of vicinal Bi-2212 films were much higher
than for vicinal YBCO films of the same tilt angle
(0s = 10°). Magneto-optical imaging of vicinal Bi-
2212 films confirmed the strong critical current
anisotropy (Fig. 8). Films were zero-field cooled
and imaged at 7 = 4.2 K with B,x = 16 mT. From
the angle o between the discontinuity line and the
sample edge the critical current anisotropy was
determined J.p/Joo = 1/tan(x) =12 in good
agreement with transport data. The electrical and
superconducting properties of vicinal Bi-2212 films
were in remarkable contrast to vicinal YBCO
films. The resistivities of YBCO films depend on
film thickness in the range 60-320 nm [44]. Fur-
thermore, critical current densities of Bi-2212 films
in external magnetic fields did not reveal the force-

free peak and the vortex string channeling ob-
served in YBCO [45].

4. Conclusion

Bi,Sr,Ca,—1Cu,Oy142)45 films (n = 1-3) were
prepared by PLD employing 248 nm KrF-excimer
laser radiation for the ablation of Bi-2201, Bi-2212
and (Bi,Pb)-2223 ceramic targets. Optimization of
substrate temperature, laser fluence and post-
annealing produced single phase, oriented and
smooth films. c-axis oriented Bi-2212 films de-
posited on (001) MgO and (001) SrTiO; sub-
strates had T = 86 K and J, (60 K) =2 x 10° A/
cm?, respectively. c-axis oriented Bi-2223 and Bi-
2201 films showed metallic resistivity behavior and
Ty = 78 K and Ty < 10 K, respectively, without in
situ post-annealing. Bi-2212 films grown on vicinal
substrates revealed tilted structure for film thick-
ness 20-300 nm and strong in-plane alignment.
The vicinal films had anisotropic critical current
densities with the higher J. along the vicinal steps
and comparable in magnitude to critical currents
of epitaxial films.
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