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A novel algorithm for ODF (orientation density function) estimation from

diffraction pole figures is presented which is especially well suited for sharp

textures and high-resolution pole figures measured with respect to arbitrarily

scattered specimen directions, e.g. by area detectors. The estimated ODF is

computed as the solution of a minimization problem which is based on a model

of the diffraction counts as a Poisson process. The algorithm applies

discretization by radially symmetric functions and fast Fourier techniques to

guarantee smooth approximation and high performance. An implementation of

the algorithm is freely available as part of the texture analysis software MTEX.

1. Introduction

The analysis of crystallographic preferred orientations in

polycrystalline specimens is a common technique in materials

science (Bunge, 1982), geology (Wenk, 1985) and biology

(Rodriguez-Navarro et al., 2006). Mathematically, the statis-

tical distribution of crystallographic orientations is modelled

by the so-called ‘orientation density function’ (ODF), a

function that is defined as the relative frequency of crystal

orientations within a specimen by volume. Experimentally,

one distinguishes between methods that measure individual

crystallographic orientations directly, e.g. via optical methods

or electron backscatter diffraction (EBSD), and methods

based on neutron, synchrotron or X-ray diffraction which

provide only integral information about the ODF called

‘diffraction pole figures’. In the latter context, the mathema-

tical and computational determination of the ODF from

diffraction pole figures used to be a major challenge. This

problem is often referred to as the ‘pole figure inversion

problem’ (Bunge, 1969).

Various methods for the resolution of the pole figure

inversion problem have been proposed, the earliest dating

back to 1965 (e.g. Bunge, 1965; Roe, 1965; Pospiech & Jura,

1974; Jura et al., 1976; Ruer, 1976; Matthies & Pospiech, 1980;

Pospiech et al., 1981; Van Houtte, 1983; Imhof, 1983; Bunge &

Esling, 1985; Pawlik, 1986; Schaeben, 1988; Matthies, 1988;

Helming & Eschner, 1990; Vadon & Heizmann, 1991; Van

Houtte, 1991; van den Boogaart et al., 2006; Bernier et al.,

2006; Hielscher, 2008). However, most of these methods, and

their implementation in a particular software code, do not

allow for high-resolution diffraction pole figures measured

with respect to arbitrarily scattered specimen directions, e.g.

by area detectors.

In fact, most of them apply to experimental intensities along

a regular grid covering a specified part of the pole sphere, e.g.

� 2 [0�, 360�], � 2 [0�, 70�], and require pre-processing by an

interpolation or approximation method to transform irregu-

larly spaced data to a regular grid with constant step size in �
and �, respectively. They are in no way suitable for analysing

data of successively locally refined resolution as introduced by

Schaeben et al. (2007). Moreover, most of the methods do not

apply, computationally, to sharp textures, e.g. the classical

harmonic method involving F coefficients (Bunge, 1965 1969,

1982). Other methods, e.g. eWIMV (Latteroti et al., 1999),

which is applied to sharp textures by decreasing the size of the

orientational boxes to say 1 � 1 � 1� or less, are not actually

applicable for reasons of numerical complexity, ill-posedness

or computational efficiency. A practical application of any of

these methods or related software to a texture as pronounced

as the hematite texture presented in this paper (see x4) has not

yet been reported.

In this paper we present a novel method for pole figure

inversion that allows for arbitrarily scattered pole figure data

with a spatial resolution of up to 1�. This method is imple-

mented as part of the freely available MATLAB toolbox for

quantitative texture analysis, MTEX (Hielscher, 2008), and

satisfies the following key requirements: (i) the estimated

ODF is non-negative; (ii) the method allows for arbitrary

crystal and diffraction geometries; (iii) the method allows for

superposed pole figures; and (iv) the unknown normalization

coefficients of the pole figures are determined simultaneously

with the ODF.

Additionally, the method considers the measurement error

affecting the diffraction data. In this paper, we model the

measured diffraction intensities as a random sample of a

Poisson process parameterized by the unknown ODF. Then we

look for the best estimator of the unknown parameter given

the observed diffraction intensities. Eventually we derive an

estimator that differs from the regularized least-squares esti-

mator (Bernier et al., 2006) by the characteristic that devia-



tions from small diffraction intensities are more severely

penalized than deviations from large diffraction intensities. In

this way, our method accounts for the standard deviation of

measurement errors which increase with the square root of the

diffraction counts (Wenk, 1985, p. 37).

Another remarkable feature of our method is the discreti-

zation by radially symmetric functions, i.e. the unknown ODF

is approximated by a linear combination of up to 100 000

unimodal bell-shaped standard ODFs. Approximation by

radially symmetric functions is a well established method (cf.

Buhmann, 2003; Hubbert & Baxter, 2001; Böhlke et al., 2006;

Schaeben, 1996, and references therein). It results in smooth

yet possibly sharp ODFs for which the corresponding pole

figures can be calculated explicitly. In order to perform

computation with ODFs given as the linear combination of

radially symmetric functions, numerically we apply fast

Fourier techniques on the rotation group SO(3) and the

sphere S2, cf. Kunis & Potts (2003) and Keiner et al. (2006).

Our method allows us to set the harmonic degree up to about

500 which keeps the truncation error small.

The objective of this communication is to give a complete,

concise and self-contained specification of the new pole figure

inversion algorithm implemented in MTEX. For this reason,

the paper starts with the definition of the most fundamental

notations in quantitative texture analysis, i.e. orientation,

Euler angles, and spherical and generalized spherical harmo-

nics. Since our ODF estimator is defined as the solution of a

minimization problem, much effort in this paper is devoted to

the description of an adapted iterative solver. Furthermore,

this communication includes specifications of algorithms that

compute the Fourier coefficients, the pole figures and the

volume portions of the estimated ODF.

A single example with a fairly sharp texture is presented in

x4. There are no example computations, applications or

numerical tests included in this communication – numerical

results are given by Schaeben et al. (2007) and Hielscher

(2007). An extensive numerical analysis of the algorithm as

well as a comparison with existing algorithms will be part of a

forthcoming paper.

2. Notations and general setting

2.1. Crystallographic background

We commence with the definition of the orientation of a

crystal within a polycrystalline specimen. LetKS = {x, y, z} be a

right-handed orthogonal specimen coordinate system, and let

KC = {a, b, c} be a right-handed orthogonal crystal coordinate

system. Then, we call a rotation g 2 SO(3) the orientation of

the crystal if it rotates the specimen coordinate system onto

the crystal coordinate system, i.e. gx = a, gy = b, gz = c. Let r =

(u, v, w)T be a coordinate vector with respect to the specimen

coordinate systems and let h = (h, k, l)T be the corresponding

coordinate vector with respect to the crystal coordinate

system, i.e. both coordinate vectors represent the same

direction, and we have

uxþ vyþ wz ¼ haþ kbþ lc: ð1Þ

Then, the orientation g 2 SO(3) interpreted as a matrix

realizes the basis transformation between the coordinate

systems, and we have the equation

gh ¼ r: ð2Þ

Since the crystal coordinate system can be assigned to the

crystal only modulo crystal symmetry, every orientation g 2

SO(3) is associated with a whole class of crystallographically

equivalent orientations. Crystallographic symmetries are

commonly described by symmetry groups. When analysing

diffraction data for preferred crystallographic orientation, it is

sufficient to consider the restriction of the Laue group GLaue �

O(3) to its purely rotational part GLaue ¼ GLaue\ SO(3). Two

orientations g, g0 2 SO(3) are described as ‘crystal-

lographically equivalent’ if there is a symmetry element q

2 GLaue such that gq = g0. Analogously, two crystallographic

directions h, h0 2 S2 are termed ‘crystallographically equiva-

lent’ if there is a symmetry element q 2 GLaue such that qh = h0.

According to Bunge (1982), we define the ODF of a

specimen as the function

f : SOð3Þ ! R ð3Þ

which models the relative frequencies of crystal orientations

within the specimen by volume. The ODF possesses the

symmetry property

f ðgÞ ¼ f ðgqÞ; g 2 SOð3Þ; q 2 GLaue ð4Þ

and is normalized to R
SOð3Þ

f ðgÞ dg ¼ 8�2; ð5Þ

where dg denotes the rotational-invariant measure on SO(3).

The axis distribution function (Bunge, 1982) or pole density

function (PDF) (Matthies et al., 1987) of a specimen is defined

as the function

P : S2
� S

2
! R ð6Þ

which models the relative frequencies of lattice plane orien-

tations, i.e. the relative frequencies of normal vectors, within

the specimen by volume. Mathematically, the PDF P corre-

sponding to an ODF f is characterized by the ‘fundamental

equation of texture analysis’ (Bunge, 1982, x4.2)

Pðh; rÞ ¼
1

2
½Rf ðh; rÞ þ Rf ð�h; rÞ�;

Rf ðh; rÞ ¼
1

2�

Z
Gðh;rÞ

f ðgÞ dg;
ð7Þ

where the path of integration Gðh; rÞ: = {g 2 SOð3Þ j gh ¼ r} is

defined as the set of all rotations that map the crystallographic

direction h 2 S2 onto the specimen direction r 2 S2. The

fundamental equation of texture analysis involves the integral

operatorR, recently recognized as the totally geodesic Radon

transform (Schaeben & van den Boogaart, 2003). The prop-

erties [equations (4) and (5)] of an ODF f imply the following

properties of the corresponding PDF P,
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Pðh; rÞ ¼ Pðqh; rÞ; h; r 2 S2; q 2 GLaue; ð8Þ

and R
S

2

Pðh; rÞ dh ¼
R
S

2

Pðh; rÞ dr ¼ 4�: ð9Þ

The relationship between an ODF f and its Radon trans-

formRf is one to one, whereas the PDF P determines only the

even-order Fourier coefficients of the corresponding ODF f.

The odd-order Fourier coefficients are only partly accessible

by the non-negativity property of the ODF (Matthies, 1979) or

other additional modelling assumptions.

2.2. Diffraction at polycrystalline materials

A detailed introduction to diffraction at a single crystal is

given by Forsyth (1988) and Randle & Engler (2000, x3). For

diffraction at polycrystalline materials, we refer readers to

Randle & Engler (2000, x4). Here, we only give the basic facts

necessary for a simple mathematical model upon which our

inversion algorithm is based.

For any wavelength � and any Bragg angle � we denote by

H(�, �) � S2 the set of normal vectors to lattice planes

responsible for diffraction under the specific combination of

parameters. The set H(�, �) is symmetric with respect to the

restricted Laue group GLaue � SOð3Þ, i.e. with h 2 Hð�; �Þ we

have gh 2 Hð�; �Þ for any symmetry element g 2 GLaue.

Additionally, Friedel’s law implies �h 2 Hð�; �Þ for any

h 2 Hð�; �Þ.
In most cases, the set H(�, �) contains at most one class of

crystallographically equivalent directions. However, especially

for lower-order crystal symmetries, superposition of beams

diffracted by different lattice planes occurs. In this case the

structure coefficients �ðhÞ of the diffracting lattice planes

h 2 Hð�; �Þ describe the superposition of the reflection

intensities with respect to the lattice planes in H(�, �) (Randle

& Engler, 2000, x3.3).

Multiplying the structure coefficients �ðhÞ with the PDF

P(h, r), i.e. with the relative volume of all crystal orientations

satisfying Bragg’s law with respect to a fixed specimen direc-

tion r 2 S2, we obtain the relative intensity of the beam

diffracted at the lattice plane h 2 Hð�; �Þ. Summing over all

h 2 Hð�; �Þ we achieve a normalized deterministic model for

the diffraction intensity Inormð�; �; rÞ caused by a polycrystal-

line specimen given a certain wavelength �, a Bragg angle �
and a specimen direction r,

Inormð�; �; rÞ ¼
P

h2Hð�;�Þ

�ðhÞ

" #�1 P
h2Hð�;�Þ

�ðhÞPðh; rÞ: ð10Þ

In practice, normalized diffraction intensities are not

accessible and only particle counts are measured, which are

affected by background radiation and measurement errors

and differ from the normalized intensities by an unknown

normalization factor. Let us denote the known background

radiation by Ib(�, �, r) and the unknown normalization factor

by �ð�; �Þ. Then we have, for the absolute intensity,

Iabsð�; �; rÞ ¼ �ð�; �Þ
P

h2Hð�;�Þ

�ðhÞPðh; rÞ þ Ibð�; �; rÞ: ð11Þ

Since particle counts can be modelled with the Poisson

distribution with its mean value set to the absolute intensity

(Randle & Engler, 2000, x4.3.5), we obtain, for an individual

diffraction measurement, the statistical model

Ið�; �; rÞ ’ Pois
h
�ð�; �Þ

P
h2Hð�;�Þ

�ðhÞPðh; rÞ þ Ibð�; �; rÞ
i
;

ð12Þ

characterizing it as a one-element random sample of a para-

meterized Poisson process.

It should be noted that equation (12) is only a very simple

model for experimental diffraction counts. First of all, Bragg’s

law itself is only a rough simplification of much more sophis-

ticated models explaining diffraction (e.g. Cowley, 1995).

Second, the diffraction counts commonly used for texture

determination are obtained by processing a spectrum of

diffraction counts for varying Bragg angles � or wavelengths �
(Hammond, 1997; Randle & Engler, 2000, x4). However, even

the simple model implies that the standard deviation of

diffraction counts is approximately

�Ið�;�;rÞ ¼ Iabsð�; �; rÞ
� �1=2

’ Ið�; �; rÞ½ �
1=2; ð13Þ

(cf. Wenk, 1985, p. 37).

2.3. The diffraction experiment

In a complete diffraction experiment for the purpose of

ODF determination, diffraction counts with respect to several

diffraction parameters and several specimen directions are

measured. We assume the parameters and the data are orga-

nized in the following way. We enumerate the sequence of

diffraction parameters (�i; �i) and the corresponding sequence

of lattice planes Hi ¼ Hð�; �Þ � S2 by the index i = 1, . . . , N. If

no superposed pole figures are measured, the sequence Hi, i =

1, . . . , N, corresponds simply to the sequence of measured

lattice planes. For each pair (�i; �i), i = 1, . . . , N, of a wave-

length and a Bragg angle, we enumerate the specimen direc-

tions rij 2 S
2 with respect to which diffraction intensities are

measured by the indices j = 1, . . . , Ni. Correspondingly, we

abbreviate the diffraction counts by Iij ¼ Ið�i; �i; rijÞ and the

background intensities by Ib
ij ¼ Ibð�i; �i; rijÞ. The indexing ij, i =

1, . . . , N, j = 1, . . . , Ni, is in fact short for iji. Thus, it in no way

implies any specific grid but applies to arbitrarily scattered

specimen directions in each pole figure.

In order to derive a concise representation, we abbreviate

the unknown normalization coefficients by the vector

mtrue 2 R
N
þ, ½mtrue�i = �ð�i; �iÞ; i ¼ 1; . . . ;N, and collect the

diffraction counts Iij in the single vector

I ¼ I11; . . . ; I1N1
;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

IT
1
2RN1

I21; . . . ; I2N2
;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

IT
2
2RN2

. . . ; IN1; . . . ; INNN
Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

IT
N
2RNN

T

2RN
: ð14Þ

The diffraction counts Ii = ðIi1; . . . ; IiNiÞ
T
2 R

Ni
þ corresponding

to the ith set of lattice planes Hi are called the ith pole figure.
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In our notation, we have N pole figures with a total number of

N =
PN

i¼1 Ni measured diffraction data.

Introducing finally for any ODF f : SO(3)! R the notation

Rf ðHi; rijÞ ¼
P

h2Hi

�iðHÞRf ðHi; rijÞ; ð15Þ

we rewrite our statistical model [equation (12)] for a complete

diffraction experiment as

Iij ’ Pois Ib
ij þ ½mtrue�iRftrue ðHi; rijÞ

� �
;

i ¼ 1; . . . ;N; j ¼ 1; . . . ;N;
ð16Þ

using the fundamental equation of texture analysis [equation

(7)].

A complete overview of all parameters of a diffraction

experiment is given in Table 1. From the point of view of the

statistical model [equation (16)], the measured diffraction

counts I 2 RN occur as a one-element random sample of a

parameterized Poisson process. Hence, the objective of

quantitative texture analysis is to estimate the unknown ODF

ftrue and unknown normalization coefficients mtrue from the

random sample I.

2.4. Harmonic functions on S2 and SO(3)

An important tool for the analysis of ODFs and PDFs is

harmonic functions on the two-dimensional sphere S2 and on

the rotation group SO(3). Given the series expansion of an

ODF into harmonic functions on SO(3), the corresponding

PDF has a well known series expansion in terms of spherical

harmonics (Bunge, 1982, x4.2). Furthermore, its Fourier

coefficients are instrumental in calculating the mean macro-

scopic properties of the corresponding specimen, e.g. its

thermal expansion, optical refraction index, electrical

conductivity or elastic properties.

We render an explicit definition of harmonics as there are

many slightly different ways to define them, e.g. with respect to

normalization, the disastrous impact of which is only revealed

in the course of writing and checking software code. There-

fore, it is our hope that the reader and practitioner of texture

analysis and open-source software development will

appreciate a comprehensive and consistent view of a method

with unique features.

Harmonic analysis on the sphere is based on the Legendre

polynomials P l : ½�1; 1� ! R; l 2 N0, where

P lðtÞ ¼ ð1=2ll!Þ ðdl=dtl
Þ½ðt2
� 1Þl� ð17Þ

and on the associated Legendre functions Pk
l : [�1, 1] !

R; l 2 N0; k ¼ 0; . . . ; l;

P
k
l ðtÞ ¼ ½ðl � kÞ!=ðl þ kÞ!�1=2

ð1� t2
Þ

k=2
ðdk=dtk

ÞP lðtÞ: ð18Þ

In terms of the associated Legendre functions, we define the

spherical harmonics Yk
l ðrÞ, l 2 N0; k ¼ �l; . . . ; l, by

Y
k
l ðrÞ ¼ ½ð2l þ 1Þ=4��1=2

P
jkj
l ðcos �Þ expðik�Þ; ð19Þ

where �, � 2 R are the polar coordinates � 2 ½0; 2��, � 2 ½0; ��
of the vector

r ¼ ðcos � sin �; sin � sin �; cos �ÞT 2 S2: ð20Þ

By this definition, the spherical harmonics are normed toR
S

2

Y
k
l ðrÞY

k0

l0 ðrÞ dr ¼
R
S

2

Y
k
l ð�; �ÞY

k0

l0 ð�; �Þ sin � d� d� ¼ �ll0�kk0

ð21Þ

and, hence, provide an orthonormal basis in L2ðS
2
Þ.

In order to define harmonic functions on SO(3) we use the

parameterization of a rotation g 2 SO(3) in terms of Euler

angles by Matthies et al. (1987):

g ¼ gð�;	; 
Þ ¼ Rotðz; �ÞRotðy; 	ÞRotðz; 
Þ;

�; 
 2 ½0; 2��; 	 2 ½0; ��;
ð22Þ

where Rot(r; !) denotes the rotation about the axis r 2 S2 and

angle ! 2 ½0; ��. Now we follow Nikiforov & Uvarov (1988)

(see also Varshalovich et al., 1988; Kostelec & Rockmore,

2003; Vollrath, 2006) and define for l 2 N0; k; k0 ¼ �l; . . . ; k,

the generalized spherical harmonics or Wigner D functions as

Dkk0

l ð�; 	; 
Þ ¼ expð�ik�Þ dkk0

l ðcos 	Þ expð�ik0
Þ; ð23Þ

where

dkk0

l ðtÞ ¼ skk0
ð�1Þl�k0

2l

ðl þ k0Þ!

ðl � k0Þ!ðl þ kÞ!ðl � kÞ!

� �1=2

�
ð1� tÞ

k�k0

ð1þ tÞkþk0

" #1=2

dl�k0

dtl�k0
ð1� tÞ

l�k
ð1þ tÞ

lþk
ð24Þ

and

skk0 ¼

1 k; k0 � 0;
ð�1Þk k0 � 0; k<0;
ð�1Þk

0

k � 0; k0<0;
ð�1Þkþk0

k; k0<0:

8>><
>>: ð25Þ

The last term skk0 corrects for the normalization we used for

the spherical harmonics, and is slightly different from that

used by Nikiforov & Uvarov (1988). The Wigner D functions

are orthogonal in L2[SO(3)], i.e.

R2�
0

R�
0

R2�
0

Dmn
l ð�; 	; 
ÞD

m0n0

l0 ð�; 	; 
Þ d� sin 	 d	 d


¼
8�2

2l þ 1
�ll0�mm0�nn0 ; ð26Þ
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Table 1
List of parameters of a diffraction experiment.

Symbol Description

N 2 N Number of pole figures
Ni 2 N; i ¼ 1; . . . ;N Number of specimen directions
GLaue � SOð3Þ Laue group
Hi ¼ Hð�i; �iÞ � S

2; i ¼ 1; . . . ;N Superposed lattice planes
�i : Hi ! Rþ Structure coefficients
rij 2 S

2; i ¼ 1 . . . ;N; j ¼ 1; . . . ;Ni Specimen directions
Iij 2 Rþ; i ¼ 1 . . . ;N; j ¼ 1; . . . ;Ni Diffraction counts
Ib

ij 2 Rþ; i ¼ 1 . . . ;N; j ¼ 1; . . . ;Ni Background intensities



and are related to the spherical harmonics by the repre-

sentation property

Pk
k¼�l

Dkk0

l ðgÞY
k0

l ðhÞ ¼ Y
k
l ðghÞ; g 2 SOð3Þ; h 2 S2: ð27Þ

Moreover, any ODF f 2 L2 [SO(3)] has an associated Fourier

expansion of the form

f ’
X1
l¼0

Xl

kk0¼�l

ðl þ 1
2Þ

1=2

2�
f̂f ðl; k; k0ÞDkk0

l ; ð28Þ

with Fourier coefficients f̂f ðl; k; k0Þ; l 2 N0; k; k0 ¼ �l; . . . ; l:
The following well known central theorem characterizes the

relationship between the Fourier expansion of an ODF and its

corresponding PDF.

Theorem 1. Let f 2 L2 [SO(3)] be an ODF with Fourier

expansion

f ’
X1
l¼0

Xl

kk0¼�l

ðl þ 1
2Þ

1=2

2�
f̂f ðl; k; k0ÞDkk0

l : ð29Þ

Then the corresponding PDF P = 2 L2ðS
2
� SÞ, Pðh; rÞ =

ð1=2Þ½Rf ðh; rÞ þ Rf ð�h; rÞ� possesses the associated Fourier

expansion

Pðh; rÞ ’
X
l22N0

Xl

k;k0¼�l

1

ðl þ 1
2Þ

1=2
f̂f ðl; k; k0ÞYk0

l ðhÞ Y
k
l ðrÞ: ð30Þ

2.5. Fourier transforms

The operator that transforms any function into its corre-

sponding Fourier sequence is generally called a Fourier

transform. However, on the domains S2 and SO(3) a discrete

Fourier transform in the above sense requires a quadrature

rule for the specific set of nodes. That is the reason why, in

numerical harmonic analysis, the term Fourier transform is

often used for the inverse operator (Kunis & Potts, 2003). We

adapt this denomination and define the discrete Fourier

transform on the sphere S2 as the operator

Fr;L : Cð2Lþ1Þ2
! C

N;

½Fr;LP̂P�j ¼
PL
l¼0

Pl

k¼�l

P̂PlkY
k
l ðrjÞ; j ¼ 1; . . . N;

ð31Þ

which evaluates the Fourier series given by the Fourier coef-

ficients P̂P 2 Cð2Lþ1Þ2 with bandwidth, i.e. series expansion

degree, L 2 N at the vector r of nodes rj 2 S
2; j ¼ 1; . . . ;N.

Analogously, we define the discrete Fourier transform on

the rotation group SO(3) as the operator

Fg;L : C1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ
! C

M;

½Fg;L f̂f�m ¼
XL

l¼0

Xl

k;k0¼�l

ðl þ 1
2Þ

1=2

2�
f̂flkk0 D

k;k0

l ðgmÞ; m ¼ 1; . . . ;N;

ð32Þ

where g = (g1, . . . , gM) denotes a vector of M 2 N arbitrary

nodes gi 2 SO(3) and f̂f 2 C1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ denotes a vector

of Fourier coefficients with bandwidth L 2 N0.

For our algorithms we will also need the adjoint Fourier

transforms FH
L;r and FH

L;g which are defined as

FH
L;r : CN

! C
ð2Lþ1Þ2 ; ½FH

L;rc�l;k ¼
XN

j¼1

cjY
k
l ðrjÞ ð33Þ

and

FH
L;g : CN

! C
1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ;

½FH
L;gc�lkk0 ¼

ðl þ 1
2Þ

1=2

2�

XN

j¼1

cjD
kk0

l ðgjÞ;
ð34Þ

2.6. Radially symmetric functions

In texture analysis, radially symmetric functions appear as

unimodal bell-shaped model ODFs. Mathematically, they are

defined as functions : SO(3)! R or ’ : S2
! R that depend

only on the distance to a centre rotation g0 2 SOð3Þ or a centre

direction r0 2 S
2, respectively, i.e. we have

 ðgÞ ¼  ðg0Þ and ’ðrÞ ¼ ’ðr0Þ ð35Þ

for all rotations g; g0 2 SO(3) with ffðgg�1
0 Þ ¼ ffðg

0g�1
0 Þ and all

directions r; r0 2 S2 with ffðr; r0Þ ¼ ffðr
0; r0Þ. Here, ffðgg�1

0 Þ

denotes the rotational angle of the rotation g; g�1
0 .

Both radially symmetric functions on the rotation group as

well as on the sphere have characteristic Fourier series

expansions. More precisely, there exist Chebyshev coefficients

 ̂ ðlÞ and Legendre coefficients  ̂ ðlÞ; l 2 N, respectively, such

that

 ðgÞ ’
X1
l¼0

 ̂ ðlÞ
Xl

k;k0¼�l

Dkk0

l ðgÞD
kk0

l ðg0Þ

’
X1
l¼0

 ̂ ðlÞU2l cos
ffðgg�1

0 Þ

2

� �
ð36Þ

and

’ðrÞ ’
X1
l¼0

’̂’ðlÞ
4�

2l þ 1

Xl

k¼�l

Y
k
l ðrÞY

k
l ðr0Þ

’
X1
l¼0

’̂’ðlÞP lðr 	 r0Þ: ð37Þ

Here U l; l 2 N, denote the Chebyshev polynomials of the

second kind.

It is well known that all pole figures of radially symmetric

ODFs are radially symmetric. In particular, the Chebyshev

coefficients  ̂ ðlÞ of a radially symmetric ODF  coincide with

the Legendre coefficients of its Radon transform R ðh; 	Þ, i.e.

R ðh; rÞ ’
P1
l¼0

 ̂ ðlÞP lðg0h 	 rÞ; h; r 2 S2: ð38Þ
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Example 2. An example of a well localized, non-negative,

radially symmetric function on SO(3) is the de la Vallée

Poussin kernel (Schaeben, 1997). It is given for any k 2 N by

 ðgÞ ¼
Bð32 ;

1
2Þ

Bð32 ; �þ
1
2Þ

cos2� ffg

2
: ð39Þ

Its Radon transform is calculated as

R ðh; rÞ ¼
1þ �

2�
ð1þ h 	 rÞ� ¼ ð1þ �Þ cos2�

ffðh; rÞ: ð40Þ

The parameter � controls the halfwidth of the kernel. The de

la Vallée Poussin kernel  , its Radon transform R and its

Chebyshev coefficients  ̂ are plotted in Fig. 1.

3. Numerical ODF estimation

In this section we present an estimator of the unknown ODF

that is based on the statistical model [equation (16)] and

discuss its numerical implementation. Throughout all of this

section we denote by GLaue � SOð3Þ, Ii, Ib
i 2 R

Ni
þ , Hi � S

2,

�i : Hi ! R and ri = ðri1; . . . ; riNi
Þ; rij 2 S

2, i ¼ 1; . . . ;N, the

known parameters of a diffraction experiment as summarized

in Table 1.

3.1. The weighted least-squares estimator

In x2 we have shown that the pole figure inversion problem

can be interpreted as a classical parameter estimation

problem, with the ODF and the normalization coefficients as

the unknown parameters, given the random sample

Iij; i ¼ 1; . . . ;N; j ¼ 1; . . . ;Ni of diffraction counts. We

consider two popular estimators – the maximum likelihood

estimator

ðfME; mMEÞ ¼ argmin
PN
i¼1

PNi

j¼1

Iij ln½�iRf ðHi; rijÞ þ Ib
ij �

� �iRf ðHi; rijÞ ð41Þ

and the least-squares (LS) estimator

ðfLS; mLSÞ ¼ argmin
PN
i¼1

PNi

j¼1

I�1
ij ½�iRf ðHi; rijÞ þ Ib

ij � Iij�
2; ð42Þ

where both minimization problems are subject to the

constraints

m � 0; f � 0 and
R

SOð3Þ

f ðgÞ dg ¼ 8�2: ð43Þ

Both estimators may be regularized by adding a Sobolev norm

�jjf jjH½SOð3Þ� of the ODF f as a penalty term. This penalty term

can be interpreted as the prior information on the unknown

ODF to be smooth.

Because of the unknown normalization coefficients, m =

ð�1; . . . ; �NÞ are neither linear nor convex and hence both

minimization problems may have several solutions (Hielscher,

2007). A second problem inherent in the minimization

problems [equations (41) and (42), respectively] is that

common algorithms result in solutions that tend to be unstable

and largely dependent on the initial guess of the unknown

parameters f and m (Hielscher, 2007). A more robust estimator

is obtained when the unknown normalization coefficients

�i; i ¼ 1; . . . ;N, in the LS estimator are replaced by their

quadrature rule estimators

~��iðf Þ ¼
PNi

j¼1

Iij � Ib
ij

 !
=
PNi

j¼1

Rf ðHi; rijÞ

" #
: ð44Þ

We call the resulting estimator

fMLS ¼ argmin
PN
i¼1

PNi

j¼1

½ ~��iðf ÞR f ðHi; rijÞ þ Ib
ij � Iij�

2=Iij

� �
þ �jjf jj2H½SOð3Þ� ð45Þ

the modified least-squares estimator.

The representation of the ODF estimation problem as a

least-squares problem which includes the unknown normal-

ization coefficients as unknown variables dates back to Houtte

(1983). Weighing the least-squares functionals [equations (42)

and (45)] with the inverse expected variance I�1
ij of the

measurement error [equation (13)] we ensure the homo-

scedasticity of the underlying regression problem. The regu-

larization term �jjf jjH½SOð3Þ� was first suggested by Bernier et al.

(2006) and van den Boogaart et al. (2006), and can be inter-

preted as a model assumption on the true ODF that biases the

estimator towards smoother ODFs.
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Figure 1
(a) The de la Vallée Poussin kernel  for � = 7, (b) its Radon transform
R and (c) its Chebyshev coefficients.



3.2. Discretization

Solving the minimization problem [equation (45)] numeri-

cally requires a discretization of the parameter space, i.e. of

the space of all ODFs. In the traditional harmonic method

(Bunge, 1969) the ODF is approximated by its truncated

Fourier series. The drawback of this discretization is that it is

hard to ensure the non-negativity constraint. Another

approach is the approximation by piecewise constant or linear

ODFs (Bernier et al., 2006). In this case, ensuring non-nega-

tivity is straightforward, but the calculation of the corre-

sponding PDF is mathematically more involved and

numerically slower in comparison to the Fourier series

approach.

A compromise between the two approaches is the approx-

imation by finite linear combinations of radially symmetric

functions, i.e. by functions of the form

f ðgÞ ¼
PM
m¼1

cm ðgg�1
m Þ; ð46Þ

where

 ðgÞ ¼ ~  ðffgÞ ¼
P1
l¼0

 ̂ ðlÞ U2l ½cosðffg=2Þ�; g 2 SOð3Þ ð47Þ

is a non-negative radially symmetric function and g1; . . . ; gM is

a set of nodes in the domain of rotations. Approximation by

radially symmetric functions is a well known technique in

approximation theory on the sphere and other manifolds. The

resulting functions are smooth given the Ansatz function  is

smooth and the non-negativity of the coefficients cm, m =

1, . . . , M, immediately implies the non-negativity of f.

In order to consider crystal symmetry, we look for

approximations of the ODF by linear combinations

f ðgÞ ¼
PM
m¼1

cm GLaue
ðgg�1

m Þ ð48Þ

of symmetrized radially symmetric functions

 GLaue
ðqÞ ¼

1

jGLauej

X
q02GLaue

 ðqq0Þ: ð49Þ

If the nodes g ¼ g1; . . . ; gM are almost uniformly distributed

in the domain of orientations with resolution �, and the Ansatz

function  is fairly well localized in spatial and in frequency

domain with halfwidth ð3=2Þ�, then any sufficiently smooth

ODF can be approximated by a function of the form of

equation (48) at resolution �. A family of such Ansatz func-

tions is formed by the de la Vallée Poussin kernel as intro-

duced in Example 2. If the ODF is known to be concentrated

in a certain region of the domain of orientations, then

restricting the nodes g ¼ g1; . . . ; gM to this region may largely

improve the computational performance of the discretization.

Such a region might be automatically computed by the zero

range method (Bunge & Esling, 1979).

The first notable property of the function f is that its Radon

transform is the linear combination of radially symmetric

functions on the sphere and can be computed using the fast

spherical Fourier transform. Assume that the Ansatz function

 has a finite Fourier expansion with bandwidth L 2 N0. Then

we obtain from equations (38) and (37) the Fourier expansion

Rf ðh; rÞ ¼ R
XM

m¼1

cm GLaue
ð�g�1

m Þ

" #
ðh; rÞ

¼
XM

m¼1

cm

jGLauej

X
q2GLaue

R ðgmqh; rÞ

¼
XM

m¼1

cm

jGLauej

X
q2GLaue

XL

l¼0

 ̂ ðlÞ
4�

2l þ 1

Xl

k¼�l

Y
k
l ðgmqhÞYk

l ðrÞ

¼
XL

l¼0

Xl

k¼�l

 ̂ ðlÞ
4�

2l þ 1
Y

k
l ðrÞ

X
q2GLaue

XM

m¼1

cm

jGLauej
Y

k
l ðgmqhÞ: ð50Þ

Identifying the left-hand sum as a spherical Fourier transform

and the right-hand sum as an adjoint spherical Fourier trans-

form, we derive the following result.

Proposition 3. The Radon transform of the function f can be

represented as the composition of a direct and an adjoint

spherical Fourier transform,

Rf ðh; rÞ ¼ Fr;L

�
v


X
q2GLaue

FH
gqh;L c

	
; vlk ¼

4�

2l þ 1
 ̂ ðlÞ; ð51Þ

where v is a (2L + 1)-dimensional vector and 
 denotes the

componentwise multiplication.

A second notable property of the function f is that its

Fourier series can be calculated by an adjoint discrete SO(3)

Fourier transform FH
g;L of the coefficients cm, m = 1, . . . , M.

More precisely, we obtain from equations (32) and (36) the

following equality.

Proposition 4. The Fourier coefficients of the function f can be

computed by

f̂flkk0 ¼ w
 FH
g;L c; wlkk0 ¼

4�2

l þ 1
2

 ̂ ð2lÞ; ð52Þ

where w is a ð1=3Þ(L + 1)(2L + 1)(2L + 3)-dimensional vector.

Since the Sobolev norm k f kH½SOð3Þ� in equation (45) is just

the ‘2 norm k!
 f̂f k2 of the Fourier coefficients of f with

weights !lkk0, l = 0, . . . , 1, k, k0 = �l, . . . , l, given by the

Sobolev space H[SO(3)] (Freeden et al., 1998; Hielscher,

2007), we obtain the following representation in terms of the

coefficients cm, m = 1, . . . , M,

k f kH½SOð3Þ� ¼ kw
 FH
L;g ck2; wlkk0 ¼

4�2

l þ 1
2

!lkk0  ̂ ð2lÞ: ð53Þ

Next we are going to restrict the estimator [equation (45)] to

the finite-dimensional space of functions of the form of

equation (48).

Proposition 5. The restriction of the estimator [equation (45)]

to functions of the form of equation (48) is equivalent to the

minimization problem
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cMLS ¼ argminc2RM JðcÞ; subject to c � 0; c 6¼ 0 ð54aÞ

with

JðcÞ ¼
XM

i¼1










 I�1=2 


�
�ic

cTai

þ Ib
i � Ii

	








2 þ










w
 FH

g;Lc

cTa0










2;
ð54bÞ

where the matrices W 2 RM;Ni and the vectors a0; ai 2 R
M,

i ¼ 1; . . . ;N, are defined as

Wij;m ¼ ½R GLaue
ð�g�1

m Þ�ðHi; rijÞ; a0 ¼ 1M; ai ¼
WT

i 1Ni

k Ii � Ib
i k1

;

ð55Þ

and the weights w 2 R1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ

½w�;s�lkk0 ¼
4�2

l þ 1
2

!lkk0  ̂ ð2lÞ ð56Þ

are chosen according to the Sobolev space H[SO(3)] and the

Ansatz function  .

Proof. By equations (50) and (53) the right-hand side of

equation (45) equals for all c 2 RM
þ and

f ðgÞ ¼
PM
m¼1

cm GLaue
ðgg�1

m Þ ð57Þ

the functional J(c). Hence, the restriction of the estimator

[equation (45)] to functions of the form of equation (48) is

equivalent to the restriction of the minimization problem

[equation (54)] to the domain {c 2 RM
þ j kck1¼ 1}. Since the

functional J is scaling invariant, i.e. J(c) = J(mc) for all m > 0,

the constraint kck1¼ 1 can be replaced by the constraint

c 6¼ 0.

It is not difficult to show that the functional J is differ-

entiable and that the minimization problem [equation (54)]

has a solution. However, the solution is in general not unique.

An example of this behavior as well as a proof of the

preceding assertion are given by Hielscher (2007).

Remark 6. The matrix vector multiplication Wic essentially

requires the computation of the sum [equation (50)] for all

specimen directions rij; j ¼ 1; . . . ;Ni. According to Proposi-

tion 3, this sum can be computed with numerical complexity

OðM þ Ni þ L2log2L) using the fast spherical Fourier trans-

form (Keiner et al., 2007).

In Proposition 4 and equation (53), we have shown that the

evaluation of the second term in equation (54) essentially

requires a discrete Fourier transform on SO(3). A fast algo-

rithm performing this transformation with numerical

complexity OðL3log2L) is described by Vollrath (2006).

Consequently, using these algorithms, the evaluation of the

functional J(c) has the total numerical complexity OðNþ

NL2log2Lþ L3log2L).

3.3. The modified steepest descent algorithm

There are several algorithms for nonlinear, non-negatively

constrained minimization, e.g. projected steepest descent,

modified steepest descent, gradient projection residual norm

conjugated gradients etc. (cf. Vogel, 2002). Here, we confine

ourselves to the modified steepest descent algorithm (Kim,

2002, x4.2.1; Bardsley & Nagy, 2005) since it is appropriate to

large-scale problems and combines simplicity and fast

convergence. Moreover, it is especially well suited for

problems where the unknown vector is sparse (Bardsley &

Nagy, 2005).

Let J be some arbitrary differentiable function on RM . We

are looking for solutions of the non-negatively constrained

minimization problem

cest ¼ argminc2RM
þ

JðcÞ: ð58Þ

The modified steepest descent algorithm is an iterative

method based on the fix point iteration

cðnþ1Þ ¼ cðnÞ þ �ðnÞ ~ccðnÞ ð59Þ

where cðnÞ is the actual estimate in the nth iteration, ~ccðnÞ 2 RM

is some descent direction, and � > 0 is the step size. In contrast

to the ordinary steepest descent algorithm, the descent

direction ~ccðnÞ is fixed as the negative gradient of J½cðnÞ�

componentwise multiplied with the actual estimate cðnÞ, i.e.

~ccðnÞ ¼ �cðnÞ 
 grad J½cðnÞ�: ð60Þ

The step length �ðnÞ is calculated by a line search. In order to

ensure the non-negativity of cðnþ1Þ at each iteration n 2 N the

step size has to be restricted to [0, �ðnÞmax] with

�ðnÞmax ¼ maxf� > 0 j cðnÞ þ �~ccðnÞ � 0g

¼ min

�
�
½cðnÞ�m
½~ccðnÞ�m

j m ¼ 1; . . . ;M; ½~ccðnÞ�m < 0

�
: ð61Þ

Algorithm 1 (shown in Fig. 2) outlines the modified steepest

descent algorithm.

3.4. Adaptation to the functional J

Next, we are going to apply the modified steepest descent

algorithm to solve the minimization problem [equation (54)].

We will use the following abbreviations.

Definition 7. Let n 2 N and cðnÞ; ~ccðnÞ 2 RM . Then we define for

i = 0, . . . , N the coefficients �ðnÞi ; ~��ðnÞi 2 R as

�ðnÞi ¼ 1=½aT
i cðnÞ� and ~��ðnÞi ¼ 1=½aT

i ~ccðnÞ�: ð62Þ

Moreover, we define the residuals u
ðnÞ
i , ~uuðnÞi 2 R

Ni , i ¼ 1; . . . ;N

as

u
ðnÞ
i ¼ I�1=2 
 ½�ðnÞi Wic

ðnÞ þ Ib
i � Ii� and

~uuðnÞi ¼ I�1=2 
 ½ ~��ðnÞi Wi ~cc
ðnÞ
i þ Ib

i � Ii� ð63Þ

and set for completeness the vectors u
ðnÞ
0 ; ~uuðnÞ0 2

C
1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ to
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u
ðnÞ
0 ¼ �

ðnÞ
0 w
 FH

g;LcðnÞ and ~uuðnÞ0 ¼ ~��ðnÞ0 w
 FH
g;L ~ccðnÞ: ð64Þ

Here we make use of the Fourier weights w 2

R
1=3ðLþ1Þð2Lþ1Þð2Lþ3Þ as defined in Proposition 5.

With these abbreviations we have:

Proposition 8. Let n 2 N and cðnÞ 2 RM . Then the functional J

as defined in Proposition 5 simplifies to

J½cðnÞ� ¼
PN
i¼0

ku
ðnÞ
i k

2
2 : ð65Þ

Let, furthermore, ~ccðnÞ 2 RM and cðnþ1Þ ¼ cðnÞ þ �ðnÞ ~ccðnÞ for some

�ðnÞ 2 R. Then we have, for all i = 0, . . . , N, the recurrence

formulae

�ðnþ1Þ
i ¼

�ðnÞi ~��ðnÞi

�ðnÞ�ðnÞi þ ~��ðnÞi

and u
ðnþ1Þ
i ¼

~��ðnÞi u
ðnÞ
i þ �

ðnÞ�ðnÞi ~uuðnÞi

�ðnÞ�ðnÞi þ ~��ðnÞi

:

ð66Þ

Proof. By Definition 7 we obtain for any i = 0, . . . , N the

relationship

�ðnþ1Þ
i ¼

1

aT
i ½c
ðnÞ þ �ðnÞ ~ccðnÞ�

¼
1

½1=�ðnÞi þ �
ðnÞ= ~��ðnÞi �

¼
�ðnÞi ~��ðnÞi

�ðnÞ�ðnÞi þ ~��ðnÞi

ð67Þ

and for any i = 1, . . . , N the equality

u
ðnþ1Þ
i 
 I

1=2
i ¼ �

ðnþ1Þ
i Wi

�
cðnÞ þ �ðnÞ ~ccðnÞ

�
þ Ib

i � Ii

¼
�ðnÞi ~��ðnÞi

�ðnÞ�ðnÞi þ ~��ðnÞi

Wi

�
cðnÞ þ �ðnÞ~ccðnÞ

�
þ Ib

i � Ii

¼
~��ðnÞi ½�

ðnÞ
i Wic

ðnÞ þ Ib
i � Ii� þ �

ðnÞ�ðnÞi ½ ~��
ðnÞ
i Wi~cc

ðnÞ þ Ib
i � Ii�

�ðnÞ�ðnÞi þ ~��ðnÞi

¼
~��ðnÞi u

ðnÞ
i þ �

ðnÞ�ðnÞi ~uuðnÞi

�ðnÞ�ðnÞi þ ~��ðnÞi


 I
1=2
i : ð68Þ

For i = 0 the proof of equation (66) is analogous.

With the abbreviations of Definition 7, we find the following

expression for the gradient of the functional J.

Lemma 9. Let n 2 N. Then the gradient of the functional

J[c(n)] =
PN

i¼0 ku
ðnÞ
i k

2
2 is given by

ð1=2Þ grad J½cðnÞ� ¼ �ðnÞ0

�
Fg;L½u

ðnÞ
0 
 w�� ku

ðnÞ
0 k

2
2 a0

�
þ
PN
i¼1

�ðnÞi

�
vi � �

ðnÞ
i vT

i cðnÞai

�
; ð69Þ

where vi = WT
i ½u
ðnÞ
i 
 I

�1=2
i �.

Proof. By the chain rule we obtain

1

2

d

dcðnÞ










Wic

ðnÞ

aT
i cðnÞ
þ Ib

i � Ii










2

I�1
i

¼
aT

i cðnÞWT
i � ai½Wic

ðnÞ�
T

½aT
i cðnÞ�2

��
Wic

ðnÞ

aT
i cðnÞ
þ Ib

i � Ii

�

 I�1

i

�

¼
WT

i ½u
ðnÞ
i 
 I�1

i �

aT
i cðnÞ

�
½u
ðnÞ
i 
 I1=2

i �
TWic

ðnÞ

½aT
i cðnÞ�2

ai: ð70Þ

On the other hand, the gradient of the regularization term is

1

2

d

dcðnÞ










w
 FH

g;LcðnÞ

aT
0 cðnÞ










2

2

¼
aT

0 cðnÞFg;L � a0ðF
H
g;LcðnÞÞT

ðaT
0 cÞ2

�
w2
�;s 
 FH

g;LcFg;L

aT
0 cðnÞ

¼ �ðnÞ0 Fg;L½u
ðnÞ
0 
 w�� k u

ðnÞ
0 k

2
2 a0

n o
: ð71Þ

We will also need the following representation of the

function � 7! J½cðnÞ þ �~ccðnÞ� as a simple rational function based

on the quantities u
ðnÞ
0 and ~uuðnÞ0 as defined in Definition 7.

Lemma 10. Let cðnÞ; ~ccðnÞ 2 RM . Then � 7! J½cðnÞ þ ~ccðnÞ� is a

rational function in �. More precisely, we have

J½cðnÞ þ �~ccðnÞ� ¼
XN

i¼0

Ai þ 2�Bi þ �
2Ci

½��ðnÞi þ ~��ðnÞi �
2

; ð72Þ

where we have set for any i = 0, . . . , N,
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Figure 2
Algorithm 1: modified steepest descent.



Ai ¼k ~��ðnÞi u
ðnÞ
i k

2
2; Bi ¼ h ~��

ðnÞ
i u
ðnÞ
i ; �

ðnÞ
i ~uuðnÞi i;Ci ¼k�

ðnÞ
i ~uuðnÞi k

2
2 :

ð73Þ

Proof. By Proposition 8 the function � 7! Jðcþ �~ccÞ can be

rewritten as

J½cðnÞ þ �~ccðnÞ� ¼
XN

i¼0










 ~��ðnÞi u

ðnÞ
i þ ��

ðnÞ
i ~uuðnÞi

��ðnÞi þ ~��ðnÞi










2

2

¼
XN

i¼1

k ~��ðnÞi u
ðnÞ
i k

2
2 þ2�h ~��ðnÞi u

ðnÞ
i ; �

ðnÞ
i ~uuðnÞi i þ �

2 k�ðnÞi ~uuðnÞi k
2
2

½��ðnÞi þ ~��ðnÞi �
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The next lemma shows that one can choose the upper

bound �ðnÞmax as defined in equation (61) as the maximum

stepsize.

Lemma 11. Let cðnÞ 2 RM and let ~ccðnÞ ¼ cðnÞ 
 grad J½cðnÞ� be

the modified gradient of the functional J. Then, the maximum

step length as defined in equation (61),

�ðnÞmax ¼ min

�
�
½cðnÞ�i
½~ccðnÞ�i

j m ¼ 1; . . . ;M; ½~ccðnÞ�i < 0

�
; ð75Þ

is finite.

Proof. Since J½cðnÞ� does not depend on the scale of cðnÞ, i.e.

J½cðnÞ� = J½
cðnÞ� for all 
> 0, the gradient of J½cðnÞ� is ortho-

gonal to cðnÞ. Taking into account that cðnÞ � 0 we conclude that

the modified descent search direction ~ccðnÞ = �grad J½cðnÞ� 
 cðnÞ

is either zero or has at least one negative component. Hence,

�ðnÞmax is finite.

Merging Remark 6, Proposition 8, Lemmas 9, 10 and 11, we

obtain the following theorem.

Theorem 12. Algorithm 3 (shown in Figs. 3 and 4) implements

the modified steepest descent (MSD) algorithm for the mini-

mization problem [equation (54)]. The numerical complexity

of each iteration corresponds to the numerical complexity of

the matrix vector multiplications Wic; i ¼ 1; . . . ;N, and FL;gc.

Proof. Algorithm 3 implements the modified steepest descent

Algorithm 1.

In lines 1– 5 the vectors ai 2 R
M; i ¼ 1; . . . ;N; required for

the calculation of the normalization coefficients (cf. Proposi-

tion 5), the initial values of the residuals u
ð0Þ
i and the

normalization coefficients �ð0Þi ; i ¼ 1; . . . ;N (cf. Definition 7),

are computed. These calculations require the matrix vector

multiplications WT
i 1Ni

and Wic; i ¼ 1; . . . ;N.

In lines 8–10 the gradient of the functional J in cðnÞ is

computed according to Lemma 9. This essentially requires the

matrix vector multiplications WT
i u
ðnÞ
i ; i ¼ 1; . . . N.

In line 11 the modified descent direction of the MSD

algorithm is computed according to equation (60).

In lines 12–14 the updates ~uuðnÞi and ~mmðnÞi ; i ¼ 1; . . . ;N, of the

residuals and the normalization coefficients are computed (cf.

Definition 7). Again, this requires the matrix vector multi-

plications Wic; i ¼ 1; . . . ;N.

In lines 15 and 16 the step size is computed using Algorithm

2 and the initial step length as approved in Lemma 11.

The updating of the coefficient vector is performed in line

17, whereas the residuals and the normalization coefficients

are updated in lines 18 and 19 (cf. Proposition 8).

Corollary 13. Combining Remark 6 and Theorem 12 we

conclude that the numerical complexity of each iteration of

algorithm 3 is OðN þM þ L3Þ.

Since the estimated ODF is a superposition of radially

symmetric functions, it is straightforward to calculate its

Fourier coefficients (cf. Proposition 4) or arbitrary pole figures
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Figure 3
Algorithm 2: line search.



[see equations (38) and (50)]. In order to calculate the volume

portion of the ODF in a certain region of the domain of

orientations, one can use the fast Fourier transform on SO(3)

to evaluate the estimated ODF at a number of nodes within

the region and apply a quadrature rule to calculate the

volume.

4. Practical example

To demonstrate the features of MTEX, we elaborate on the

analysis of preferred crystallographic orientation of a hematite

specimen H43C1 which has been interpreted in terms of

experimental deformation by Siemes et al. (2008). The subject

of their communication is the critical resolved shear stresses of

hematite crystals and glide modes of hematite. Hematite,

Fe2O3, is a trigonal mineral with corundum structure and a

hexagonal cell with a0 = 0.5038, c0 = 1.3772 nm, to which the

symbols for planes (hkil), sets of symmetry-related planes

{hkil}, directions [uvtw] and sets of symmetry-related direc-

tions huvtwi refer. Tetragonal prismatic specimens, sized 7 �

7 � 14 mm, were prepared in different crystallographic

orientations with their top plane either parallel to c(0001),

rð01�112), f ð10�111), að11�220) or mð10�110). Complete pole figures

representing the crystallographic preferred orientation of the

research papers
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Figure 4
Algorithm 3: modified least-squares ODF estimator.



bulk volume were measured with a neutron texture diffract-

ometer at the Research Centre Jülich (Jansen et al., 2000).

Since this diffractometer is equipped with a position-sensitive

detector, the reflections of c(0001), f ð10�111Þ, rð01�112Þ, eð10�114)

and að11�220Þ were simultaneously measured for a 2� range of

50� using a wavelength of 0.2332 nm, with c(0001) obtained

from the third-order reflection (0003). To detect the peaks in

the pole figures of these reflections, the standard scanning grid

comprising about 500 sample positions was refined to 14 616

positions with a mean distance of 1.5�. The total measuring

time was about 3 d. The intensity data were corrected for

background intensities according to the Jülich data-processing

procedure.

The five experimental pole figures are displayed in Fig. 5. To

compute an ODF explaining the data, the de la Vallée Poussin

kernel with a halfwidth of 1.25� corresponding to the finite

bandwidth of L = 416 of the series expansion into generalized

spherical harmonics was used. Applying the ‘zero range’

option of MTEX the kernel was centred at 1294 orientations

with a mean distance of 1.2�. Owing to the use of the ‘zero

range’ option of MTEX, the time elapsed to compute the ODF

was 427 s with a notebook equipped with a Core 2 Duo CPU

with 1.86 GH c.p.u. frequency and 2 GB RAM.

The computed orientation density is displayed in 12�
sections of Fig. 6. Its texture index is approximately 5000;

correspondingly, the entropy is approximately �7.8.

There is a major mode at (150�, 0�, 60�) computed by

MTEX (in terms of Matthies’ Euler angles). The corre-

sponding volume portion in the 5� neighbourhood of the

major mode is approximately 55%, the value of the ODF at

the major mode is 9100. Three minor modes are recognized by

visual inspection at about (90�, 65�, 59�), (30�, 115�, 1�) and

(150�, 115�, 1�), respectively. The corresponding volume

portions in the 5� neighbourhood of the three minor modes

are approximately 8, 13.5 and 8.5%; they sum to approxi-

mately 30%. The values of the ODF at the three minor modes

are 660, 545 and 580. It is once more confirmed that an

interpretation of an orientation density function in terms of its

values may be deceiving. A proper interpretation is accom-

plished in terms of volume portions only.

The recalculated pole figures are

diplayed in Fig. 7. Then the recalcu-

lated pole figures are augmented with

the pole points corresponding to the

major and minor modes and shown in

Fig. 8, where the major mode depicted

in black represents the parent crystal

orientation, and the three minor modes

depicted in blue, red and green,

respectively, indicate three r-twin

orientations.

Eventually, the pole figure RP errors

have values of RP(0001) = 0.5,

RP(10�111) = 0.8, RP(01�112) = 0.8,

RP(10�114) = 0.6, and RP(11�220) = 0.8.

5. Conclusions

A novel algorithm for ODF estimation

from diffraction pole figures has been

presented, which is especially well

suited for sharp textures and high-

resolution pole figures measured with

respect to arbitrarily scattered

specimen directions, e.g. by area

detectors. The estimator has been
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Figure 5
Experimental pole figures (equal area projection, upper hemisphere) of
the reflections c(0001), f ð10�111Þ, rð01�112Þ, eð10�114) and að11�220Þ, measured by
neutron diffraction with specimen H43C1 deformed by 3.4% in
compression perpendicular to c(0001) at 873 K and 300 MPa confining
pressure, with compression direction perpendicular to plane of projec-
tion.

Figure 6
MTEX’s recovered ODF based on experimental pole figures of the reflections c(0001), f ð10�111Þ,
rð01�112Þ, eð10�114) and að11�220Þ.



characterized as the solution of a nonlinear minimization

problem considering the unknown orientation density values

and the unknown normalization coefficients simultaneously.

Neglecting the regularizing Sobolev norm term, it is empha-

sized that the objective function aims at minimization of the

relative error and thus takes statistical distribution of the

measurement errors into proper account. To solve the mini-

mization problem numerically, an iterative algorithm has been

presented that applies a discretization provided by radially

symmetric functions and fast Fourier techniques.

The authors would like to thank the editor Daniel

Chateigner, Caen, for his encouragement and patience, and in

particular Heinrich Siemes, RWTH Aachen, for his sympa-
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Figure 7
Recalculated pole figures (equal area projection, upper hemisphere) of
the reflections c(0001), f ð10�111Þ, rð01�112Þ, eð10�114) and að11�220Þ computed
and displayed with MTEX.

Figure 8
Recalculated pole figures (equal area projection, upper hemisphere) of
the reflections c(0001), f ð10�111Þ, rð01�112Þ, eð10�114) and að11�220Þ augmented
with major mode (150�, 0�, 60�) (black), and minor modes (90�, 65�, 59�)
(blue), (30�, 115�, 1�) (red), and (150�, 115�, 1�) (green), respectively,
computed and displayed with MTEX.
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