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INTRODUCTION
Orientation distribution functions, ODFs, are usually represented graphically
in the Euler angle space, in spite of serious deficiencies, like a threefold
representation of each orientation and a degeneracy of the invariant volume
element near =0. Frank with his excellent article at the precessor of this
conference has vividly argued in favour of the Rodrigues representation of
rotations. It is given by

r tan(co/2), n (1)
where oo is the angle and n the axis of a rotation. It is the purpose of this
article to extend the arguments given by Frank and illustrate by some graphic
examples the superior features of this representation.

ANGLE AXIS REPRESENTATIONS OF THE FORM (1) HAVE
NO SINGULARITY AT THE ORIGIN.

Occasionally the opinion is expressed, that angle axis representations are
ill-behaved at the origin and should be rejected on this ground. This is true
only if the direction of the axis, n, is given in polar coordinates by two
angles, say and 0. If this is done, the identity, E, is represented not by
a point, but by the plane: oo 0, arbitrary and 0. Because of this singularity
at E this particular angle axis representation has rightfully not gained much
attention.

Let f (oo) be a monotonous function of the rotation angle with f (0)= O. If
the cartesian coordinates of the vector f(o)n_, are used, E is represented
by just one point, (0,0,0), and no problems arise near E. It will become
clear by equation (13) that the opposit is true: the deviations from the ideal
metric tend to zero when E is approached.

THE EFFECT OF LATTICE AND SAMPLE SYMMETRIES
ON THE ANGLE AND AXIS OF THE ROTATIONS

Let L be the transformation matrices of the lattice symmetries and Sk those
of the sample symmetries. If we describe the orientation of the lattice with
respect to the sample by the transformation matrices between a sample and
a lattice coordinate system, and if o is one of them, then all of these matrices
are given by

Ok Li" O" S k (2)
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As an important special case we also consider the orientation of the lattice
with respect to a given coordinate system (a "sample" without symmetry,

[). This full orientation is obviously given by the following set of
matrices

O=k.O (3)
Usually, the proper rotation with the smallest angle is picked from these
for representing the full orientation. For cubic lattices (3) contains 24
matrices from which the selection can be made. In this way the angle can
be kept always smaller than 62.8 . If mutual orientations of two cubic
lattices are considered, we have (s)-- (L) and (2) containing 24*24=576
matrices has to be used. Surprisingly, the upper bound for the angles is
again 62.8 z. Obviously, the specimen symmetries in (2) do not act on the
rotation angle. Indeed, it is easy to prove:
If the s sample symmetries are a sub-group of the lattice symmetries, the
sl matrices O sk break up into classes of s matrices each. The matrices
within a class have all the same angle, which equals the angle of a suitably
chosen Or. This holds for all lattice symmetries.

Proof: Ok LOS S,SkLOS SLOSk SOSk.
There will in general be just one matrix with the smallest angle among the
O. say M, but s such matrices among the O. They are obviously
M S M. S, having the axes s. m. Thus, the axes of all M are obtained
by transforming one of them with all the sample symmetries. Obviously one
and only one of these is found in the orientation triangle defined by the
sample symmetries. Thus we have the result:
A unique representative can be selected out of the matrices (2) by requiring
that the rotation angle is as small as possible and the rotation axis is in
the orientation triangle defined by the sample symmetries. This holds for
all lattice symmetries.

a) b) c)

Figure 1 Orientation spaces in the Rodrigues representation for cubic
lattices: a) sample without symmetry b) ortho-rhombic sample c) cubic
sample (disorientation).
To illustrate this, fig.l shows three orientation spaces for cubic lattices in
the Rodrigues representation. The origin is marked by "O". All rotations are
represented by points inside the polyhedra. The axis, n, and the angle, co,

of the orientation can be obtained from the radiusvector of the representing
point via (1). The truncated cube in fig.la is the orientation space for full
orientatiens, i.e. no sample symmetries. The shortest vectors reaching the
surface are found along the axes tan(45/2)=x/-l. The shortest radius
vector along the [111] directions reaching the truncating triangles has a
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length of tan(60/2) 1/2. The maximum angle (longest radius vector) is

realized at the corners tan(62.8/2)--/23-16’--0.61. The rectangular
coordinates of one corner are (J--1, J--1,3- J-).
If the sample has some symmetries, the orientation space is that section of
the truncated cube which is cut out by the orientation triangle of the sample
symmetry. Fig.It shows for cubic sample symmetry the well known
Mackenzie cell in its most simple form bounded by planes a pleasant
feature of the Rodrigues space. Fig.1 b shows the must important orientation
space, the one for ortho-rhombic sample symmetry. Again it is cut out of
the truncated cube, but now according to the orientation "biangle" of the
ortho-rhombic sample symmetry. This is the orientation space in which
rolling textures of cubic materials can be presented.

CHARACTERIZATION OF THE RODRIGUES SPACE AS THE
MOST SIMPLE THREE-DIMENSIONAL ORIENTATION SPACE.

In the following it will be shown, that the most natural representation of
rotations is possible on the surface, H, of the hyper-sphere in the four-
dimensional space, R4, in the sense that this is the only three-dimensional
manifold with the required metric. Furthermore it will be shown that the
Rodrigues space is the most natural representation in three-dimensional
space since it is the geodesic projection of H4 onto R, thus preserving
most of the metric of H4.

The proper three-dimensional rotations are isomorphic to the three-
dimensional orthogonal matrices A with det(A)---l, which form a Lie group,
SO(3)4. The representations of SO(3) have been studied extensively because
of their far-reaching implications for quantum mechanics 7. One central
result is the recognition of the two-to-one homomorphic mapping of SU(2)
onto SO(3). SU(2) is the group of the special (det(u)--l), unitary two-
dimensional complex matrices u, which may be written

u= with Re(u)2+Im(u)2+Re(v)2+Im(v)2- 1 (4)
O Lt

The mapping is given explicitly by e

A(u) Im(u 2 + v 2) Rt(tt2- 02) 2Re.(uu (S)

2lm(uo’) 2Re(tto’) uu oo

Thus the two pairs of complex numbers +_(u,v) represent the rotation given
in (5). They are called Cayley-Klein parameters.
A point, X, in the 4-dimensional space, R4, may be uniquely associated
with u by

x n=Re(u), Xz=Im(u), X:=Re(v), X4=Im(o) (6)
Because of (4) we have X2=l. Thus the pairs of opposing points, _+X, on the
surface of the unit hyper-sp_here, H4, in R4 may be used as representatives
of the rotations via (6,5,4) s.
We define the vector-part, , of X as "-(Xz.Xa.X,,)or X-(X,.)). X
and , are very simply related to the angle, 0* <_ oo < 180", and axis, n.n of
the associated rotation A:

X cos(oo/2), - sin(oo/2)n_ or X (cos(oo/2), sin(oo/2)n_)(7)
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The consecutive execution of B and then A, the multiplication of the
rotations, is very simply reflected in the associated Y(B), X(A) and Z(AB):

Z=XY-X’Y, Z=XY+YX+XxY (8)

AS a consequence the invers of X is obtained by changing the sign of .
This agrees with (7). If we write Z XY and interpret X, Y, Z as quaternions,
then (8) is identical to the quaternion multiplication.
The distance between two rotations, A, B, is usually defined by some function
of the angle, co, of the interconnecting rotation, c=aa-, say
d(A,B)=oa(AB-I)/2. Due "to (7,8)’ cos(oo/2)=Z=XYl+’’(9)
Thus the angle in R4 between X and Y or equivalently the distance
measured within the unit hyper-sphere H4 between X and Y is oa/2. We
thus have: The metric of rotations as defined by (9) is identical to the
R4-induced metric in H4.
Since multiplication of two rotations by one given rotation preserves their
distance, as defined by (9), the R4-distances are also preserged. Thus we
have:
1. H4 is rigidly rotated if all X are multiplied with one given rotation
2 integration over H4 using the hyper-surface element dH4 is an invariant
integration in the sense of Hurwitz.
From the above it is clear, that the most natural representation of rotations
can be achieved in H with its R4-induced metric. However, H4 is non-
euclidian with a constant positiv curvature. Therefore, although beeing a
three-dimensional manifold, H4 cannot be projected into the euclidian Rz
without deforming its metric. The problem is analogous to that of mapping
the earth’s surface onto a plane the dimensionality beeing just raised by
one. In both cases projections are available which preserve the geodesic
lines or the volume, to name the most important ones. Here we have an
additional requirement: Because of the importance of the axis of rotation,
the projection x(X)should be parallel to it:

x(x)= f(m)n (lO)
The geodesic projection

x=X/X (11)
yields (co) tan (m/;2), which is just the Rodrigues representation (1).
The functional determinant of the projection (10) can easily be shown to
be

dH4/clV= sinZ(oa/2)/(2 f’(oa)fz(oa)) (12)
Inserting ./(m)= tan(oa/2)into (12) yields

ctV ( + nZ)ZclH (13)
Conservation of the volume, cilia= clV, is possible since (12) yields 9.

The geodesic Rodrigues projection (11) is by far the most convenient one
since it transforms the geodesic lines of H, into the geodesic lines of Rz:
In general the geodesic line between two gven points is the shortest line
connecting them. In euclidian Rz it is a straight line, on H4 it is a hyper-circle
with its center at the origin in analogy to the great circles on a sphere in
Rz. Since H4 is non-euclidian with a constant positiv curvature, H cannot
be_ projected into the euclidian Rz without deforming its metric. In spite
of that it can be projected such that all geodesics in the case of cartography
all meridians and great circles become straight lines, thus preserving as
much as possible of the original metric.
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In terms of rotations the geodesic lines in H4 can be characterized as follows:
R(00)- A B(00, n), -180"<oo_<180". (14)

where B(co, n)is the set of rotations about the fixed axis n with angle co.
This is obviously identical to the definition of fiber texture’. Thus we have:
All fiber texture axes are represented by straight lines in the Rodrigues
space. Furthermore the following is a direct consequence of the geodesic
nature of the Rodrigues space and has been discussed in detail by Frank
in a different context: All bounding surfaces introduced by the symmetries
are planes in the Rodrigues space. Both properties simplify calculations as
well as visual perception. As shown above they are unique to the Rodrigues
space because it is the geodesic projection of H4. Examples are given in
fig.3 and fig.l.
Since the projection is geodesic, it cannot simultaneously preserve the
volume. However, this is not very detrimental because usually the region
of interest is confined to the interior of the truncated cube of fig.In. There,
for o* <_ oo < 62,8*, the invariant volume element deviates according t’o (13)
from the euclidian volume element by less than a factor of two, which
means for the linear dimensions of the volume element just 24%.

a)

Figure 2 50% contour lines of two isolated orientations in Euler and
Rodrigues representation presented in three dimensions as stereo pairs.

CALCULATION OF ODF’S IN RODRIGUES SPACE
FROM EXISTING DATA IN EULER SPACE AND VICE VERSA.

Because of the convenient properties of the Rodrigues space we follow
Frank in recommending the latter for graphical representation of orien-
tation distributions.
The transformation between the two spaces is given by

cos--y- -sin--y- tan-Tr_. tan ’2+*" ’2+*’ tancos --T- cos --y-
(15)

COMPARISON OF THE SUITABILITY OF THE EULER
AND RODRIGUE SPACE FOR REPRESENTING ODF’S

In order to compare the properties of the two spaces, an artifical orientation
distribution is shown in fig.2 in both spaces. To facilitate visual perception
the plots are given as perspective stereopairs of the 50% contours. The ODF

Oconsists of two GauBian distributions ofidentical variance of 4.6 centered
around two different orientations.
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1. There are six spheres instead of two in the Euler space because of the
threefold representation of each orientation in this space.
2. The bounding surfaces which separate the three symmetrically equivalent
sub-cells of the Euler space (not shown in fig.2a) are curved, whereas the
bounding surfaces of the Rodrigues space are plane.
3. The spheres strongly differ in size and shape in the Euler space although
all spheres contain the same number of individual orientations and are
isotropic. This is due to the fact that the ratio between invariant and euclidian
volume element strongly deviates and even becomes zero at if--0. To alleviate
this problem, not the orientation density, p, but the ratio p//paitieal..is
usually plotted in Euler space. This was also done in fig.2, still gvng resmts,
which are not satisfying. In the Rodrigues space p may be plotted directly
with good results (fig.2b). A plot of P/Pt,at,iaieal in the Rodrigues space is
almost identical.
4. Fig. 3 demonstrates that fiber axes are curved in Euler space and straight
in Rodrigues space.

2

i)8 7

Figure 3 Some orientations within an ideally sharp fiber texture are
plotted and labelled by consequtive numbers. Neighbouring orientations
differ by 10o. The segmentation of the lines is due to the "Umklapp" effects
of the symmetries.
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