
Textures and Microstructures, 1988, Vols. 8 & 9, pp. 313-350
Reprints available directly from the publisher
Photocopying permitted by license only
(C) 1988 Gordon and Breach Science Publishers Inc.
Printed in the United Kingdom

A Comprehensive
Mathematical
Formulation of an Extended
Taylor-Bishop-Hill Model
Featuring Relaxed Constraints,
the Renouard-Wintenberger
Theory and a Strain Rate
Sensitivity Model
P. VAN HOUTTE
Department of Metallurgy and Materials Engineering, Katholieke Universiteit
Leuven, Belgium

(Received May 13, 1987)

Dedicated to the memory of Professor Giinter Wassermann

The Taylor theory and the Bishop-Hill theory for the plastic deformation of
polycrystals are expressed in a mathematical way which makes extensive use of
vectors. These vectors represent either plastic strain rate tensors or deviatoric stress
tensors, both in a unified five-dimensional stress-strain space. Such formulation
permits a unified formulation of both theories, which can then easily be solved by
means of linear programming. The computer implementation of this formalism (in
Pascal) conserves this mathematical formalism to a high extent.

Relaxed constraints (or "mixed boundary conditions") can very easily be
incorporated in the method. The concept of a "relaxed constraint" is formulated in a
much more general way than has ever been done before.

It is not only shown why there are often multiple solutions for the slip rates, but
also that such difficulties can arise for the stress state as well. A few methods for
making an appropriate choice among these equivalent solutions are explained, one
based on the Renouard-Wintenberger theory that proposes a secondary energy
criterion, and another that takes strain rate sensitivity effects into account.

KEY WORDS: Taylor-Bishop-Hill theory, five-dimensional stress-strain space,
relaxed constraints, stress rate sensitivity.
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1 INTRODUCTION

The Taylor theory and the Bishop-Hill theory for the plastic
deformation of polycrystals have been outlined several times
(Kocks, 1970; Gil Sevillano, Van Houtte and Aernoudt, 1980; Van
Houtte and Wagner, 1985). Some papers give details about solution
methods such as linear programming (Van Houtte and Aernoudt,
1975; Gil Sevillano et al., 1980). Several extensions or variations
have been proposed to this theory since the time that it has first
been described and used for the prediction of deformations
textures.
An important development has been the introduction of relaxed

constraints. Several authors have nearly simultaneously felt that
Taylor’s first assumption of homogeneous strainstating that each
crystallite must undergo exactly the same plastic deformationis
too strict and have proposed less strict hypotheses concerning the
distribution of plastic strain through the polycrystal (Honeff and
Mecking, 1978, 1981; Kocks and Canova, 1981; Van Houtte, 1981;
Kocks and Chandra, 1982; Van Houtte, 1982). These so-called
"relaxed constraints theories" have been successfully used for the
explanation of detailed features of the rolling textures of f.c.c, and
b.c.c, metals. The "Hosford" model is a special variant to be used
for materials that exhibit the "curling" phenomenon (Hosford,
1963) upon axisymmetric extension or compression (Van Houtte,
1984; Van Houtte, Wenk and Wagner, 1984).
A major problem of the Taylor-Bishop-Hill theory (especially of

the "full constraints" version, with the original assumption of
homogeneous strain) is, that several solutions are found for the set
of slip systems that must be activated in order to achieve the
increment of plastic deformation that at a given moment is imposed
on a given crystallite. Many discussions have been held about how
to choose among those energetically equivalent solutions. In recent
times, a few new criteria have been proposed for this selection:

to account for strain rate sensitivity: the various solutions may
not be energetically equivalent when instead of adopting the
same critical resolved shear stresses (CRSS) on all active slip
systems, values are used that take the strain rate sensitivity of the
CRSS into account (Canova and Kocks, 1984; Asaro and
Needleman, 1985).
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to account for a second-order term in the minimization of the
plastic work: Taylor’s second hypothesis is, that the slip system
combination must be such, that the internal plastic work required
to achieve the imposed strain is minimal. As said above, this still
leads to several equivalent solutions. Renouard and Wintenber-
ger (1981) have proposed to require in addition that the rate of
variation of this plastic work as strain goes on should be
minimized as well. This variation is due to the rotation of the
crystal lattice of the grain towards crystal orientations that are
more favourably oriented for plastic deformaton, or less. The
model proposed by Renouard and Winterberger gives preference
to those solutions that let the crystal rotate into more favourable
orientations. Several authors have compared the results of this
model to experimental data (Skalli, Fortunier, Fillit and Driver,
1985; Bacroix, Jonas, Montheillet and Skalli, 1986).

Several authors (amongst whom the present author) have made
computer codes in which all the features mentioned above have
been implemented. However, to the knowledge of the author, there
is no paper yet that gives a comprehensive view on the mathemati-
cal details involved; until now, they had to be collected from several
papers by different authors. So the purpose of the present paper is
to present the theory underlying these complex computer codes in a
modern, comprehensive way.
The conventional assumptions and simplifying hypotheses of the

Taylor-Bishop-Hill theory and its variants are adopted throughout
this paper. They will not be discussed here. For discussions about
such aspects, and in general for the physical background of these
models, the reader is referred to several review papers (Kocks,
1970; Gil Sevillano et al., 1980; Van Houtte, 1984).

2 CONVENTIONS

Bold-faced letters (including Greek letters) will be used to indicate
vectors and tensors (capital letters for tensors). Non-italic, non-bold
face letters designate the matrices that describe these vectors or
tensors. Scalars are always indicated by italics or by non-bold face
Greek letters.
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Examples:
A is a tensor, A its conjugate.
A and AT are their matrix representations in a particular reference
system (AT is the transposed of A). Without further specification,
the crystal system is used as reference system. A superscript
indicates that a different reference system is used; the superscript s
refers to the sample system: A and AsT.
The elements of these matrices (or the components of the

tensors) would then be: A,S. and AS. The transformation laws
between A and A are:

AS T-AT TTAT (la)
and

A TAT-1= TASTT (lb)
in which T is the transformation matrix (see for example Eq. (1) in
the paper by Van Houtte and Wagner (1985)).
The summation convention is used for repeated indices, except

when they are put between rounded brackets. The ranges used for
the indices are as follows:

fori,]: lto3.
for k: 1 to rn + n; rn is the number of possible deformation
mechanisms (slip or twinning systems); n is the number of
relaxations that are considered. For full constraints models (see
below), n is zero.
forp, q: lto5.
forh:lto2.
for o:: 1 to N; N is the number of equivalent optimal basis
solutions of the Taylor theory (see below).

The conventional summation symbol E will however be used
whenever other ranges are required than those mentioned above.

3 BASIC EQUATIONS OF THE TAYLOR-BISHOP-HILL
THEORY

3.1 Introduction

In the Taylor-Bishop-Hill theory, the crystallites are treated one
by one. The theory is normally used to identify the active slip



EXTENDED TAYLOR-BISHOP-HILL MODEL 317

systems of a particular crystallite (of which the crystal orientation is
known) at a certain moment during a process of plastic deforma-
tion. The strain history of that process is assumed to be known in
terms of macroscopic strains or strain rates. The identification of the
active slip systems is accompanied by the calculation of the local
plastic stress state, of the local rate of plastic work, of the slip rates
on the individual slip systems and finally of the resulting rotation
rate of the crystal orientation.
The basic assumptions of the Taylor theory are:

1) All crystallites are subject to the same plastic strain (= the
prescribed strain).

2) The plastic strain is achieved by (multiple) slip.
3) Of all possible combinations of slips that achieve the pre-

scribed strain, those that minimize the internal work must be
chosen.

On the other hand, the basic assumptions of the Bishop-Hill
theory are:

1) All crystallites are subject to the same plastic strain (= the
prescribed strain).

2) The plastic strain is achieved by (multiple) slip.
3) The stress state must satisfy the yield locus of the crystal, i.e.

for no slip systems, whether active or not, should the resolved shear
stress exceed the momentaneaous critical shear stress of the system.

4) The Maximum Work Principle (Hill, 1950) is used to derive
the stress state from the prescribed strain. This means that of all
stress states permitted by the yield locus, the one that maximizes
the external plastic work (as calculated from the stress tensor and
the prescribed strain tensor) is the right one.

Bishop and Hill (1951b) and several other authors (see the review
papers by Gil Sevillano et al. (1980)) demonstrated that the two
methods are strictly equivalent.

This theory is now called the "full constraints" (FC) theory, in
contrast to the so-called "relaxed constraints" (RC) theories. The
latter somewhat "relax" the first hypothesis of both the Taylor and
the Bishop-Hill theories. As a result, it is typically replaced by a
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hypothesis of the type (example for rolling):
"All the crystallites are subject to the same plastic strain, apart
from a shear component K3 which is free."

In this example, g]3 stands for a shear in which the rolling plane is
the shear plane and the rolling direction is the shear direction (lath
model, see Van Houtte (1981)).
More details about these assumptions can be found in several

review papers (Gil Sevillano et al. (1980), Van Houtte and Wagner
(1985) for FC models, Van Houtte (1984) for RC models). In this
paper, focus will be on the mathematical aspects. It is nevertheless
worthwhile to mention that a rigid-plastic approach is used here:
elastic strains are neglected; all strains or strain rates that are
mentioned are plastic.

3.2 Full constraints models

In this section, n is zero.
The prescribed strain which is mentioned in the first assumption

(see above) has often been described by a prescribed displacement
gradient, since not only the strain tensors, but also the displacement
gradient tensors that describe the deformation of each crystallite
must be equal to each other in order to guarantee the geometrical
integrity of the deforming polycrystalline aggregate.

Since it is not the intention here to use a finite strain theory for
the description of stresses and strains, it is better to use momen-
taneous slip rates, strain rates etc. instead of finite slips or strains.
For this reason, the prescribed plastic strain will be thought to be
described by a displacement rate gradient:

prescribed displacement rate gradient Ko/eq (2)
in which/eq represents the macroscopic equivalent strain rate. Ko is
a (not necessarily symmetric) tensor that characterizes the pre-
scribed strain mode. In the case of rolling, its matrix representation
could be (Xl is the rolling direction, x3 the sheet plane normal):

0 0 0 (3)
0 0 -1
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In the case of simple shear (as is the case at the surface of the
sample in a torsion test), it would be (Xl is the shear direction and
x2 the shear plane normal):

K= 0 0 0 (4)
0 0 0

The expressions of these prescribed tensors K0 are known in the
sample reference system. Equation (lb) shows how they can be
converted to the crystal’s system.

Let /k be the slip rate on slip system k. Such slip rate causes a
deformation of the crystal (a s!mple shear) expressed by the
displacement rate gradient K(k)F(k). In a reference system g,
associated to the glide system k, and for which x is the glide
direction and x the slip plane normal, the components of the tensor
K are given by:

(K)ij 0 except (K)12 1 (5a)
In the crystal system, the components of the tensor are given by
(see Gil Sevillano et al. (1980) or Van Houtte and Wagner (1985)):

(Kk)i r(kiv(k (5b)
in which I’k is a unit vector in the glide direction of slip system k,
and Vk is the unit vector normal to the slip plane. The same
formalism can be used for a mechanical twinning system, for which
we also refer to the review papers mentioned above.
The condition that the strain caused by all slip systems together

must be equal to the prescribed strain, now becomes:

Kk/k q- RJeq-" Koeq (6)
The tensor R represents the unknown rate of rotation of the crystal
lattice per unit macroscopic strain rate.
With an eye on the com.puter implementation, it is advantageous

to rep!ace the slip rates Fk (unknown) and the macroscopic strain
rates Eeq (known) by the variables gk:

gk -’k //eq (7)
Equation (6) now becomes:

Kkgk + R- Ko (8)
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Let the tensors A and Z respectively represent the symmetric and
the antisymmetric part of the tensors K (Kk or Ko):

A 1/2(K + Kc) (9)
and:

Z 1/2(K- Kc) (10)
Equation (8) can now be split into two tensor equations:

Akgk A0 (11)
Zkgk + R Zo (12)

since R is an antisymmetric rotation tensor. The unknown gk are
then obtained by solving Eq. (11) (see below), after which the
unknown lattice rotation R is obtained from Eq. (12):

R Zo- Zkgk (13)
Note that tensors of the type A(k)/(k) are strain rate tensors.

3.3 Relaxed constraints models

Taylor’s and Bishop Hill’s first hypotheses are partly abandoned,
which means that Eq. (8) and Eqs. (11-13) derived from it should
be changed. It has been shown by Van Houtte (1982) that the
increased degree of freedom of the individual crystals can be
elegantly implemented by simply adding "pseudo-slip systems" that
reflect these relaxations. In the case of rolling for example,
relaxation of the shear component (K)13 (lath model) is imple-
mented by adding a variable gm+l to the unknowns. The associated
K-tensor reflects this freedom:

0 0 1
KSm+l 0 0 0 (14a)

0 0 0

In the case of the lath model (Van Houtte (1981)), n 1. In the
pancake model, the shear (K)23 is also released, so n 2 with

K+= 001 (14b)
000
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Adding "pseudo-slip systems" of this kind, usually with zero critical
resolved shear stresses, makes it easier for the crystal to accom-
modate the imposed strain (misfit problems arising at grain bound-
aries are neglected by those theories). Once that the solutions for gk
are found, it is possible to calculate the displacement rate gradient
tensor I that still must be accommodated by slip or mechanical
twinning:

m+n

r4 E + E (15)
k=l k=m+l

which can easily be derived from Eq. (8). R can be obtained from
Eq. (13) as usual. It is worthwhile to point out that in the formalism
used in this paper, all components of the tensor Ko are prescribed,
even for the relaxed constraints models. However, in the latter
case, Ko does not represent the strain mode in a particular
crystallite. The latter is described by I. Equation (15) shows how
the crystal’s freedom (represented by the "free" variables gk, k
ranging from rn + 1 to rn + n) is introduced in K. Moreover, in the
case of relaxed constraints, K0 does not necessarily describe the
average deformation of the polycrystal, as it does for the full
constraints models. The average deformation of the polycrystal
would be described by the weighted average of I, which depends
on the sample symmetry of the texture at that moment. Let us
illustrate some of these ideas for the example of the lath model for
rolling. The shear that corresponds to (K))13 is relaxed. In practice,
the component (K)13 of K0 is still given the value zero, as would be
done in the full constraints case; however, it could be given any
other value as well, since it will be "overruled" by the term Km+l
gm+l anyway (see Eq. (14a) and Eq. (15)), in which gm+l is a "free"
variable. The 13-shear component of the polycrystal as a whole will
be zero on condition that at that moment, the texture has an
orthorombic sample symmetry (i.e., the rolling direction, the rolling
plane normal and the transverse direction are twofold axes of
rotation). When present, this symmetry will be conserved, even
when the texture evolution is simulated by a relaxed constraints
model.
The two degrees of freedom that must be introduced in order to

obtain the Hosford model (the "curling" model described by Van
Houtte (1984) and Van Houtte, Wenk and Wagner (1984)) that
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gives the grains the kind of freedom that permits them to develop
curly microstructures (Hosford, 1963) in axisymmetric tension (wire
drawing) of b.c.c, metals or axisymmetric compression of f.c.c.
metals, are described by the following two tensors (x3 is the axis of
tension or compression)"

KSm+l 0-1 0 (16a)
0 0 0

o o
KS+2 1/2 0 0 (16b)

0 0 0

These degrees of freedom correspond to the analysis of curling
given by Van Houtte (1984).
So if there are n relaxations, the number of unknowns (with

corresponding K-tensors) simply increases from m (the number of
available slip systems) to m + n. Nothing changes to the Eqs. (8)
and (11-13), neither to the way of solving them. The tensor K0 that
describes the prescribed strain in the FC model can formally still be
treated as a constant. The only difference of some practical
importance is, that for the slip systems, the matrix representations
of the K-tensors of the slip systems are known in the crystal’s
reference system (Eq. (5)), while on the other hand those of the
relaxations are usually known in the sample’s reference system.
Equation (lb) can of course be used for the conversion.

Generally speaking, all that follows applies as well to FC models
as to RC models. Each time g,, K,, A, etc. are mentioned, they
may be associated as well to a true slip system, to a pseudo-slip
system that simulates a mechanical twinning system (see e.g. Van
Houtte and Wagner (1985)), or to pseudo-slip systems associated to
a relaxed constraint.

4 VECTOR FORMULATION OF THE TAYLOR AND
BISHOP-HILL THEORY

4.1 Vector representation of stress and strain rate tensors

Suppose. that the symmetrical tensor I) is either a plastic strain rate
tensor E, a tensor such as A in the equations above (and hence
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proportional to a plastic strain tensor), or a deviatoric stress tensor
S. Then the following property holds for D:

D, =0 (17)
So i) has only five independent components. It is convenient then
to represent such tensors as vectors in a five dimensional stress-
strain space. Let us define the vector d that represents the tensor D
as follows:

(/3 + 1)De2 + (V’3- 1)D33dl 2 (18)

(/3- 1)D22 + (/3 + 1)D33d2 2 (19)

d3 /2 D23 (20)
d4 /2 D31 (21)
d5 /2 dx2 (22)

The inverse formulas of Eqs. (21-22) are obvious. Equations
(18-19) can be inverted as follows:

(3 + V’3) d- (3- /3) d2Dz2 6 (23)

-(3 V’3) dl + (3 + V’3) d2D33 6 (24)

Dll -D22 D33 (25)
Note that these definition make use of the components of D in

the crystal’s reference system. A different vector would be obtained
when D were expressed in another reference system, for example
the sample’s system.
The Eqs. (18-22) are chosen in such a way that the following

expression holds:

l)" l)’= Oi]Oi] dpdp d, d’ (26)
This for example means that the rate of plastic work per unit
volume is equal to the scalar product of the vectors/ and s, which
are the vector representations in stress-strain space of the tensors !
and S. Lequeu, Gilormini, Montheillet, Bacroix and Jonas (1987)
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have derived conversion formulas which are similar to Eqs. (18-22)
(but different) and for which Eq. (26) also holds. It is also
interesting to note that the equivalent stresses and strain rates
according to von Mises are directly proportional to the lengths of
the vectors/ and s:

Sv (-SijSij)1/2= (-32s" s) 1/2 (27)
]’VM /’2/" ,1,2 (, )1,2 (28)

4.2 Vector expression of the Taylor equations

Let a0 and ak be the vector representations of the tensors A0 and
Ae. The Taylor Eq. (11) can then be written as follows:

aegk a0 (29)
in which the right-hand side represents the prescribed strain.

Taylor’s criterion of minimum internal work can be expressed as
follows: eqW- 17 Ign/eql-- Minimum (30)
in which the factor eq can be dropped since it is constant with
respect to the minimization. For a full constraints model, W} is
(after minimization) equal to W, the rate of plastic work per unit
volume and per unit macroscopic strain rate Eeq (see Eq. (7)). ry,
represents the critical resolved shear stress on slip system k. It is
usually assumed to be zero for the pseudo-systems that correspond
to the relaxed constraints. This expression has two disadvantages: it
contains a non-linear element, and it does not allow different values
for the critical resolved shear stress in positive direction and in
negative directions. Both difficulties can be resolved by substituting
the variables gk by ghe as follows:

if gk -> 0 then gle

ifgk<0 then glk

Note that

and g2k 0

and g2k----gk (31)

ghk >- 0 (32)
f W can also be called "the plastic work per unit volume and per unit macroscopic

strain."
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Inversely,

g g g2k (33)
Now let the absolute values of the critical resolved shear stresses on
slip system k be tlk in positive direction, and tzk in negative
direction Equation (30) now becomes:

W thkghk Min (34)
A mechanical twinning system can be simulated by treating it as
a "pseudo-slip system" (see e.g. Van Houtte and Wagner (1985)).
An undesired "pseudo-slip" in the antitwinning direction can be
avoided by assigning a prohibitively high value to tzk.
The vectors ak are now replaced by vectors ahk:

alk Ilk and azk --ak (35)
This makes it possible to write the Taylor Eq. (29) as follows:

llhkghk I10 (36)
Equations (32), (34) and (36) form a complete mathematical
formulation of the Taylor theory.

4.3 Vector expression of the Bishop-Hill equations

Let S be the deviatoric stress tensor and s its vector representation.
The corresponding resolved shear stress on slip system k is
According to Eq. (5a) and Eq. (9), the tensor Ak has the

following components in the glide system’s reference system (see
section (3.2)):

(A)i 0 except (AD12 (A)21 1/2 (37)
Hence

(S12 + S,) sg2 (38)$" Ak S.(A)ij g

which by definition is the resolved shear stress rk. Hence, according
to Eq. (26),

rk Sp(ak)p S’ak (39)
The classical way of expressing the Bishop-Hill equations is:

-r,-< rk -< r, (40)
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together with the condition, that the external plastic work rate per
unit volume must be maximal:

/eqW3H Sij(Ao)ijeq Max (41)
which is derived from the Maximum Work Principle of mathemati-
cal plasticity theory (Hill, 1950). In case of full constraints, WH is
the rate of plastic work per unit volume and per unit macroscopic
strain rate, or alternatively, the plastic work per unit volume and
per unit macroscopic strain. Using Eq. (26), and dropping/eq since
it is a constant with regard to the maximization, this becomes:

Wn $ a0 Sp (ao)p Max (42)
Now using Eq. (39), and substituting r by thk and ak by ahk (Eq.
(35)), Eq. (40) becomes:

S ahk <--thk (43)
Equations (42) and (43) constitute a complete mathematical

formulation of the Bishop-Hill theory. After identification of the
active slip systems, Eqs. (32) and (36) can be used for the
calculation of the slips.

5 SOLUTION OF THE TAYLOR AND THE BISHOP-HILL
THEORY BY LINEAR PROGRAMMING

5.1 Introduction

Equation (36) usually has an infinite number of solutions for the
ghk. Using terminology taken from specialized linear programming
literature (see for example Gass (1969)) or used by the author in
previous work (Van Houtte, 1982), these solutions can be sub-
divided in several classes"

-general solutions;
-valid solutions, for which the non-negativity conditions Eq. (32)
hold;

-so-called "basis solutions", for which no more than five ghk are
different from zero. A basis solution can be valid or non-valid;

-optimal basis solutions" these are valid basis solutions for which
the minimum internal work condition (34) is satisfied.
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The Taylor Eqs. (32), (34) and (36) form a set of equations that can
be solved very efficiently by means of linear programming (see for
example Chin and Mammel (1967), Lister (1974), Van Houtte and
Aernoudt (1975)). The best known technique is the simplex
algorithm. It consists of:

-finding a first valid basis solution;
-then performing an optimality test on it; when the solution is not
optimal, a different valid basis solution is chosen using a special
rule. The optimality test is then repeated, etc.

This algorithm makes extensive use of a special concept: the basis.

5.2 Basis in stress-strain space
The "basis" of the five dimensional stress-strain space is an
important concept in this context. Any set of five independent
vectors Ip can be used as a basis. It is then possible to express an
arbitrary vector such as d as a linear combination of the basis:

d dlp (44)
in which the superscript b of the coefficients dpb refers to the
particular basis Ip.

Let d be a column-matrix that consists of the components dp of
the vector d, and d one that contains the coefficients dpb. The
components of the basis vectors bp are bpq. The matrix U is called
"the inverse of the basis""

Fbll b21 bs; -u=lb2 b.22 b.2 (45)

db can be obtained as follows:

db= U d (46)
In what follows, it will prove to be very useful to choose five
independent vectors among the ahk of the Taylor Eqs. (36) or the
Bishop-Hill Eqs. (43) in order to constitute a basis"

bp ahp,p (47)
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The indices hp and kp themselves depend on p (which ranges from 1
to 5), according to the choice that one wants to make. The analysis
below will make it clear, that the Taylor theory has no solution if
less than five independent vectors bp can be chosen among the ahk,
except perhaps for some very special combinations of crystal
orientations and prescribed strains.

In order to simplify the notations, the unknowns ghk that are
associated with the abe vectors that have been chosen for the basis
will be called yp:

Ye ghe (48)
Similarly, the coefficients th Of the internal work function that
"belong" to the basis will be called u:

up thke (49)

5.3 Finding a first valid basis solution

The first thing to do is to find five independent vectors ahk that can
constitute a basis, as has been explained in the previous section.
This could for example be done by choosing at good luck five
vectors bp among the ahk. They are independent if it proves possible
to calculate the matrix U (Eq. (45)). If U does not exist, another
choice must be made among the ahk etc. A more systematic
approach is also possible, for example by using the first stage of the
so-called simplex method (to be distinguished from the simplex
algorithm, see for example Gass (1969)).
A basis solution of the Taylor Eq. (36) can now be found by

setting all unknowns ghk equal to zero that are not associated to ahk
vectors chosen for the basis.

Using the notations related to this first basis (see Eqs. (47-49)),
and expressing the vector a0 as a function of it (Eq. (44)), the
Taylor Eq. (36) becomes:

bpyp (ao)pbp (50)
from which it is at once clear that the solution is:

yp (ao)bp
Equation (46) shows how the (a0)pb can be calculated.
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So a basis solution has been found. It is however not necessarily a
valid solution, since a valid solution must satisfy Eq. (32), or:

y _> 0 (52)
Suppose that one of the yp is negative. A very easy remedy then is,
to change the basis by replacing the corresponding ahk vector by the
vector ah,k, with

h’=3-h (53)
This simply means a sign reversal of ahk. As a result, yp of the new
basis solution will also undergo a sign reversal, and become
positive.

5.4 Optimality criterion

A valid basis solution is not necessarily optimal, i.e. it does not
necessarily minimize the internal work (Eq. (34)). Suppose now
that a valid basis solution has been found. In order to be able to
check optimality, a new concept is needed: the simplex multiplier.

Let the simplex multiplier associated to a particular basis be a
vector n, which will be defined below. Whatever its value, it may be
multiplied with the right-hand and the left-hand side of Eq. (36),
after some manipulations leading to:-- ahkghk q" , 10 0 (54)
So the left-hand side of expression (54) may be added to the
right-hand side of expression (34), which then becomes:

W (thk n ahk)ghk q- n" aO (55)
Now for the present basis, the following "cost function coefficients"
are defined:

tk thk n ahk (56)
Equation (55) now becomes:

W lkgh + n’a0 (57)
The tk that belong to the basis are given a shorter notation, similar
as has been given to thk (Eq. (49)):

" " (58)tip lhpkp



330 P. VAN HOUTI’E

From Eq. (56):
ub= Up --n" lp (59)

It is now possible to specify how n must Ie chosen: in such way that

upb=0 (60)
or

g" p Up (61)
This condition can be written as a system of linear equations in
the components of n. Inversion leads to the following solution:

{zq}= {u,}U (62)
in which {Zq} and {up} are row matrices. U is given by Eq. (45).
Theorem. A valid basis solution is an optimal solution, if for that
particular basis the following conditions hold:

thb--> 0 (63)

Proof. The internal plastic work rate W. is given by Eq. (57). It is a
linear function of the variables ghk’, the thb, are the coefficients.
Suppose now that one gradually moves on to another solution,
respecting the Taylor equations. At the starting point, which is
considered a valid basis solution, only the ghk that are associated to
the basis can be different from zero; but they cannot contribute to
W since their coefficients are zero (Eq. (60)). So their variation
can exercise no influence on W.. The value of the latter will change
because of the variation of the ghk outside the basis. Since these are
initially zero, and can only evolve in positive direction because of
Eq. (32), they will increase W when their coefficients are positive,
and decrease it when their coefficients are negative. Because of Eq.
(63), the coefficients are positive; so any departure from the
considered valid basis solution increases W. Hence the minimum
has been found.

Since all ghk outside the basis are zero, it follows from Eq. (57)
that the value of this minimal internal plastic work rate is given by:

W: n. a0 (64)
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5.5 Changing the basis

Suppose that the optimality test led to the conclusion that the
considered valid basis solution was not optimal. The following
procedure then allows to go on to a new valid basis solution that has
more chances to be optimal.
The principle is, that one of the vectors of the basis will be

replaced by one that originally was outside the basis.
The hk indices of the vector ahk that must be brought in the basis

are found from the following condition"

t,k Min (65)
Since the solution was not optimal and Eq. (63) was not satisfied,
this minimum is negative.

Let us call this vector ahk and its associated variable gh, simply a
and g. The more g can be increased from zero, the smaller W will
become. Equation (50) gave the value of the non-optimal valid basis
solution. In the next solution, the variable g will make its
introduction, so that Eq. (50) must be adapted:

bpyv + ag (ao)pbp (66)
Let us express a as a function of the basis, using Eq. (44). Equation
(66) now becomes:

Ip(yp + abpg) (ao)bp (67)
In the new solution, g will increase from zero to some positive value
and the old basis variables yp will change accordingly. Their new
values can be derived from Eq. (67):

yp (ao)bp-- abpg
The fact that the yp should not become negative, sets an upper limit

b is positive. Because of this, the new value of g will be"to g when ap

[ (a)b] b>0 (68)g Min[ aPb j for ap

Condition (68) also gives the index p of the variable yp that will
become zero. It can be removed from the basis since it will become
zero anyway. So the vector a will replace the vector bp in the basis.
When the new basis has been identified in this way, the new valid
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basis solution can be calculated, after which the optimality test can
be repeated.

After each change of the basis, a lot of coefficients must be
updated" U, n, (ao)pb, (ahk)bp and tk. It is not necessary to carry out
each time comparatively computer-time consuming calculations
such as the evaluation of U by Eq. (45). Simple and efficient
updating rules can be found in the specialized literature (e.g., Gass,
1969).

5.6 The Bishop-Hill stress

Once the simplex algorithm has found an optimal solution of the
equations of the Taylor theory, the conditions (63) are satisfied. It is
then seen from Eqs. (56) and (63) that also

n ahk <--thk (69)
is satisfied, which is very similar to the Bishop-Hill stress conditions
(43). could be identified with the Bishop-Hill stress s if only it
would also satisfy condition (42): Wia must be maximized.
According to Eq. (42), the value of WH that would correspond to
n would indeed be ’ao, which is equal to Wv according to Eq.
(64), but it has not yet been demonstrated that it is maximized by
this solution.

Let s* be a stress, different from n, that satisfies Eqs. (43):
$* ahk thk (70)

The external plastic work rate (per unit macroscopic strain rate
and per unit of volume) is then given by s* a0, in analogy to Eq.
(42).
The optimal solutions gh of the Taylor theory form a set of

non-negative values (Eq. (32)), hence the Eqs. (70) may be
multiplied by them and summed. This leads to:

$*" ahkghk thkghk (71)
Equation (36) allows to rewrite the left-hand side. The right-hand
side is nothing else as Ww (Eq. (34)), since the ghk are optimal
solutions: s* ao -< Ww (72)
This demonstrates that no solutions exist for the stress s that
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produces values for WH that are larger than WT. Hence n is a valid
solution for the Bishop-Hill stress s, and after maximization of
WH and minimization of W-, one obtains;

WIa W (73)
Active slip systems and resolved shear stress. Since n is equal to s
after the solution of the Taylor theory, comparison of Eq. (61) with
Eq. (39) (regarding Eqs. (47) and (49)) leads to the conclusion that
the resolved shear stress is equal to the critical resolved shear stress
on the slip systems that correspond to the basis. Hence in so far the
stress state is concerned, these may be active. This corresponds to
the solution that the Taylor theory finds for the ghk: these are
always zero outside the basis, not necessarily inside the basis.

Relaxed constraints and stress conditions. In section 4.2 it was
stated, that the th which are associated to pseudo-slip systems that
represent relaxed constraints, are usually assumed to be zero. A
more general assumption could be:

tl, Stc and t2, -Sc (74)
in which Sc can of course be chosen zero. Condition (43) or its
equivalent in the Taylor theory (condition (63)) then only has one
possible solution"

s.a Sc (75)

This is an stress condition that is implicitely imposed when adopting
a condition such as Eq. (74) in the Taylor theory. Indeed, this
equation can be transformed into (using Eqs. (9) and (26), and
realizing that the stress tensor S is symmetric):

S:K, Sc (76)
When for example K, is defined by Eq. (14a), this leads to:

S]3 Sc (77a)
i.e., the component 13 of the stress (in the sample’s system) is
imposed. The physical meaning of Sc is obvious in this example; it
is not always so clear. In general, a stress condition is imposed for
every constraint that is relaxed" freedom of strain and stress are
complementary. An interesting case is the "relaxed constraints"
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defined by Eq. (16a-b) ("Hosford model" for curling). Applica-
tions of Eq. (76) to Eq. (16a) leads to (with SC= 0)"

S1 Sz2 (77b)
On Eq. (16b) (equally with SkRc= 0):

S2=0 (77c)

The rate of plastic work per unit volume and per unit macroscopic
strain rate (=W).? K (Eq. (15)) describes the deformation of a
particular crystallite. The tensor A is derived from it as shown by
Eq. (9). It represents the strain rate tensor per unit macroscopic
strain rate. a is its vector representation. Using Eq. (15), it can be
shown that

m+n

a=ao- ] akgk (78)
k=m+l

Hence W is given by:
m+n m+n

W s. a s. a0- Z s. akgk WBH Z $" aggk (79)
k=m+l k=m+l

W can of course also be calculated from the slip rates (omitting the
pseudo-slip systems associated to the relaxed constraints):

m+n
W= E thkghk=WT-- E thkghk (80)

k=l k=m-1

WT and Wn are of course equal (Eq. (73)). For full constraints
models, Eqs. (79-80) reduce to

w w,,.
Equation (81) in general does not hold for relaxed constraints
models. Suppose that in such case, the conventions given by Eqs.
(74) are adopted. Regarding Eq. (73), Eqs. (79) and (80) then both
become:

m+n

W=WBH Z sICgk (82)
k=m+l

" W could equally well be called "plastic work per unit volume and per unit
macroscopic strain



EXTENDED TAYLOR-BISHOP-HILL MODEL 335

in which WBH can be replaced by Wv. It is seen that when all Sc

are zero, Eq. (81) also holds for RC models.

5.7 Summary of the solution method

After conclusion of the simplex algorithm, Eq. (51) gives the values
of the slip rates yp per unit macroscopic strain of the slip systems (or
pseudo-slip systems) that belong to the basis: they are equal to the
components of the imposed strain a0 with respect to the basis bp.
These components can be found by means of Eq. (46). The
variables y are related to the variables ghk through Eq. (48). The
slip rates ghk that do not belong to the basis are zero. So the basis
indicates the active slip (or pseudo-slip) systems, including the sense
of the slip.
The simplex multiplier of the optimal solution is the vector

representation s of the Bishop-Hill stress S. Eqs. (18-25) relate s to
S. is given by Eq. (61); Up are the critical resolved shear stresses
associated to the slip (or pseudo-slip) systems of the basis.
Taylor Factor. The Taylor factor M as it is conventionally used,

can be defined in case the critical resolved shear stress is the same
for all true slip systems. Let it be represented by :c. Then

M WT/zc (83)
in which Ww is the "rate op plastic work per unit volume and per
unit macroscopic strain rate Eeq given by Eq. (64).

6 NON-UNIQUENESS OF THE SOLUTIONS

6.1 Non-uniqueness of solutions of the Taylor theory

Equation (63) gives the optimality criterion for valid basis solutions
of the Taylor theory. The thbk have been defined by Eq. (56)
combined with Eq. (61); this means that by definition, the tg that
belong to the basis are zero.

In practice it is very often observed, that some tk that do not
belong to the basis are zero as well. Since Eqs. (63) are equivalent
to Eqs. (43), this means that the resolved shear stresses on the
corresponding slip systems are also equal to the critical resolved
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shear stress, in addition to those of the basis systems. As a result, it
is quite probable that some of the corresponding ahk vectors may be
brought in the basis (by exchanging them with some basis vectors
bp) without affecting the optimality condition. Other solutions for
the slips which are also optimal may be found in this way.

Figure lb tries to give a graphical representation of this situation.
The figure shows a part of stress-strain space, which for reasons of
clarity is assumed to be three-dimensional. The stress conditions
Eqs. (43) are represented by planes: the points that represent the
plastic stress must stay on one side of them. Since the space of the
figure is three-dimensional, three planes normally intersect in one
point (Figure la). According to the Maximum Work criterion (Eq.
(42)), the vector a0 which represents the imposed strain, must be
contained within the cone of normals on the three planes (Bishop
and Hill, 1951a). So the "corners" of the figure represent the plastic
stress states (except in special cases when a0 happens to be normal
to one of the planes or to an intersection of two planes). The three
planes that meet in such corner indicate the active slip systems. The
normals on them constitute the basis that leads to the optimal basis

(al (b)

Figttre 1 (a) In a three-dimensional stress-strain space, a "corner" of the single
crystal yield surface would normally be the intersection of three planes. Each plane
generates a "facet" and represents a particular slip system. The vector ao lies within
the cone of normals on the three facets that intersect in the stress corner which
satisfies the Maximum Work Principle. The active slip systems are identified by these
three facets. (b) "By accident", the stress corner can also be contained by a fourth
(or a fifth...) plane. Four slip systems may now be active, although three would be
sufficient in a three-dimensional stress-strain space.
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solution (in the space of Figure la, a basis consists of three vectors
only).
Suppose now that a fourth plane representing a slip system also

passes through the point (Fig. lb). This would mean that the
resolved shear stress on it also equals the critical shear stress. There
are now four normals that can be used as basis vectors. This means
that four different basises each consisting of three vectors can be
constructed. Each of these basises leads to a valid optimal basis
solution.

In true stress-strain space, a "corner" is the intersection of at
least five hyperplanes representing slip systems. In the case of
{111}(110) slip (f.c.c. metals), and for a FC model, up to eight
hyperplanes intersect in most corners when the same critical
resolved shear stress is assumed for all slip systems. It is still a
subject of debate whether this is a good model assumption or not. It
nevertheless remains necessary to find all optimal solutions when
performing Taylor-Bishop-Hill calculations.
The procedure of finding all optimal solutions is based on the

"change of basis" procedure of section 5.5. Each time an optimal
basis solution is found, the thbg that do not belong to the basis but
are nevertheless zero are sought, ahk vectors that belong to such
zero tk can be brought into the basis without need to change ,
since condition (60) remains satisfied anyway. The procedure of
section 5.5 is used in order to check which vectors could be
removed from the basis in order to make room for the new vector.
The possibles changes of the basis that are detected in this way are
not performed right away, but the identifications of these alterna-
tive basises (sets of 5 hk indices) are stored in a "linked list" in
computer memory for later use. When all possible basises are stored
in this way, an algorithm starts that examines if the linked list still
contains basises for which the solution has not yet been computed
and stored. If it finds one, the new optimal solution is computed,
the resulting slips are stored, and the procedure described above is
repeated. The algorithm stops if the linked list does not contain any
more basises for which the solution has not yet been stored.
For many applications, it is necessary to collect all those possible

optimal solutions. Several methods based on physical arguments
have been proposed to make a selection among them. But before
some of these methods can be discussed, attention must be drawn to
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another type of non-uniqueness that may arise: degeneracy of the
Taylor equations, leading to a non-unique Bishop-Hill stress.

6.2 Degeneracy of the Taylor Equation--Non-uniqueness of
the Bishop-Hill stress

Suppose that the vector a0 that describes the prescribed strain,
happens to be perpendicular to a facet or an edge of the single
crystal’s yield locus (Fig. 2). Less than five slip system can in such
case accommodate the prescribed strain. All the points of that facet
or edge then represent stress states that are valid solutions: they do
not violate the yield locus, and they satisfy the Maximum Work
condition. In practice the set of possible solutions is fully described
by the set of corner stresses that belong to the considered facet or
edge.

In terms of the linear programming method for the solution of the
Taylor theory, this situation is encountered when one or several of
the components (a0)p (of the vector a0 when expressed in the basis
associated to an optimal basis solution) happen to be zero. In such
case the linear programming problem is said to be ’degenerated’. In
the limiting case, when all but one of these components are zero,
only one slip system will be activated. This can be directly

Figure 2 In case that ao happens to be perpendicular to a facet of the single crystal
yield locus, only one slip system must be active in order to accommodate the
imposed strain. Several stress states may however achieve this: in the case of this
figure, not only the corner stresses A, B, C, D, E or F but in fact all stress states that
are represented by the points of the facet ABCDEF.
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concluded from Eq. (51); the vector a0 will be perpendicular to the
facet that represents the active slip system. Any point on that facet,
including the edges and corners that surround it, represents a valid
solution for the plastic stress. The set of all possible solutions for
the stress can be described by the set of corner stresses that
surrounds the facet. Such corner stress is identified by a basis. In
such case, it is possible to change the basis without changing the
solution that the Taylor theory finds for the slips, i.e. the same slip
system remains active and all others inactive, even when they
belong to the basis. In a sense this is a inverse type of nonunique-
ness as usually encountered in the Taylor theory (section 6.1): here
the solution for the slips is unique but the solution for the stress is
not.

In order to treat this problem, a procedure will be proposed that
allows to find another equivalent basis to which a different stress
state is associated. The procedure is intended to be used when an
optimal basis solution is found for which at least one of the 5 slips Yv
is zero. It is similar to the procedure described in section 5.5. Much
in the same way as for the other non-uniqueness problem (section
6.1), its purpose is to collect all possible optimal basis solutions that
correspond to different stress states.

Before it can be explained, the vectors c, (associated to a
particular basis) must be introduced. The components Cpq of these
vectors constitute by definition the rows of the matrix U defined by
Eq. (45). Since

UU-1= I (84)
in which I is a 5 5 unit matrix, and since the components of the
vectors b, constitute the columns of the matrix U-1, this means that

lp" I}q q (85)
in which (pq is the Kronecker symbol. The vectors Cp also constitute
a "basis" that can be used to express vectors in stress-strain space,
as explained in section 5.2.

Let us now assume that an optimal solution of the Taylor theory
(FC or RC) has been found, and that one of the slips is zero (Eq.
(51)):

Yb’ (a0)pb, 0 (86)
Because of this, the decomposition of a0 according to the basis
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remains unchanged when the basis vector bp, is replaced by another
one (which of course must also be independent of the remaining
basis vectors). So the slips are not affected by this operation;
neither is W, since it is given by Eq. (34). The Bishop-Hill stress s
however changes. Assume that it is augmented by s’, so the new
stress is given by s + s’.

It will first be explained how acceptable values for s’ can be
calculated without changing the basis, since this is a costly operation
in terms of computer time. The Bishop-Hill equations will be used.

Let us choose s’ in the following way:
s’ S’ Cp, (87)

in other words, s’ is parallel to the vector Cp,. From Eq. (42)"
WH (s + s’) a0 s’ao + S’Cp,. (ao)pbp

s" a0 + s’(a0)pbCp, "bp
and finally, because of Eq. (85) and (86),

W3H S a0

So Wn remains unchanged when the stress s is replaced by s + s’.
But can s’ (in Eq. (87)) be chosen freely? The following considera-
tions may shed some light on this:
As long as s’ is zero, the resolved shear stress on the slip systems

of the basis is equal to the critical shear stress (Eq. (61), in which zt
has been identified with s):

S.bp Up (88)
For other stress states, the yield conditions Eqs. (43) should
however not be violated. For the basis systems, this becomes:

(s + S’Cp,) .bp -< Up (89)
For other slip systems, it would be"

(s + S’Cp,). ah -< th (90)
Regarding Eq. (85), the subtraction of Eq. (89) from Eq. (88) leads
to"

s’ -< 0 (91)
Equation (90) can be written as"

S’ah + S’ Cp, ((ah)bpbp) <_ thk
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from which it follows that (Eq. (56))
bS (am,)p, <-- tin, s. am,

Since s’ is negative or zero (Eq. (91)), and ttb is positive or zero
(Eq. (63)), this condition is automatically satisfied when (a),b, is
positive or zero. When it is negative, a condition for s’ is obtained"

ts’-> (ak), (92)

Since both left- and right hand side of this condition are negative,
the most negative value that can be chosen for s’ is given by:

s’= Max [(ah),J for (ah), <0 (93)

All values of hk would typically be tried out in order to find this
maximum. The hk-indices that are associated to it designate the
vector ahk that will replace the vector b,, in the basis. A new basis
that leads to the same solutions for the slips and for Ww and
but to a different stress state, has now been identified. Once this
basis is adopted, still other solutions may be detected. The set of all
possible solutions can be obtained by a procedure very similar to
the one described in section 6.1. Most generally, all optimal
solutions of the Taylor theory (section 6.1) and of the Bishop-Hill
theory (this section) must be collected before a selection based on
physical arguments can be made among them.

6.3 Dealing with multiple optimal solutions

Suppose that N different basis solutions of the Taylor theory have
been found. The particular optimal basis solution gives the
solution (g) for the slip rates per unit macroscopic strain.

It can easily be demonstrated, that any positive linear combina-
tion of these slip rates per unit macroscopic strain also leads to a
valid, optimal but non-basis solution"

g wo(g)o (94)
with

w >- 0 (95)

w 1 (96)
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More than five slip systems may be activated for such solutions.
Eqs. (94-96) define a "cloud" of possible solutions.

One way of dealing with the problem is to use the point of gravity
of this cloud, i.e. to choose the average of all possible solutions in
order to calculate the rotations.
Another possibility is to make a random choice among the
various optimal basis solutions. It is so avoided to introduce
solutions that activate more slip systems than necessary. This
method only makes sense when the calculation is a part of the
simulation of the plastic deformation of a whole polycrystal, i.e.
when many crystallites are involved. If different increments of
strain have to be simulated, then the risk exists that for a given
grain, the set of active slip systems changes after each strain
increment. This can be avoided by giving to the slip systems that
have been active in the previous step a slightly smaller critical
shear stress than to those that were not active.
A variant of the previous method would be to avoid giving the
same critical shear stresses to all slip systems. This can be done
by using random numbers for the CRSS on the particular slip
systems. These numbers must have a narrow Gaussian distribu-
tion around an average CRSS. As a result, only one optimal
solution will be found in general.
Chin (1969) has proposed to use the amount of cross slip or the
amount of coplanar slip as selection criteria in order to choose
among the optimal basis solutions of the Taylor theory. Such
method would permit to take certain physical parameters (such as
the stacking fault energy of the alloy) into account.

Renouard and Winterberger (1981) have proposed to minimize
not only W, but also the rate of evolution of it with macroscopic
strain. This includes the hardening of the slip systems, but also
the change of W due to the fact that the crystal rotates into
orientations that are more favourable for plastic deformation, or
less. Since the lattice rotation depends on the slips, it will be
different for each optimal basis solution of the Taylor theory.
One method of taking this effect into account will be explained in
the next section.

-Several authors (Asaro and Needleman, 1985; Canova and
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Kocks, 1984) advocate to take the strain rate sensitivity of the
critical shear stresses into account. It will be shown below how
this can be done within the framework of the Taylor theory.

6.4 Implementation of the Renouard-Wintenberger method

Renouard and Wintenberger (1981) have proposed to minimize not
only W but also the rate of change of it with Eq, which then
becomes a second order selection criterion.

It is proposed here to use such criterion only after a complete
determination of all valid optimal basis solutions, using the prin-
ciples explained in section 6.1 and section 6.2, has been carried out.
Only such procedure avoids the generation of solutions that are not
optimal with respect to the first order selection criterion (Eq. (34)
or Eq. (42)).

Let us now consider a particular optimal basis solution of the
Taylor theory. All slip rates that do not belong to the basis are zero;
those that belong to the basis are the five yp; the corresponding
critical resolved shear stresses are Up. From Eqs. (34), (48) and (49)
it then follows that

WT "-yptlp (97)
Hence

OW dyp dup (98)
dEeq dEeq Up + yp dEeq

A physical work hardening model is needed in order to calculate
the derivatives of the critical shear stresses to the macroscopic strain
Eeq. The derivatives of the slip rates to Eeq can however be
calculated without further assumptions.
Assuming that the slip systems do not change, the slip rates can

be solved from
bpyp a0 (99)

which is simply Eq. (36) for a particular choice of the active slip
systems, given by Eqs. (47-48). Equation (99) reduces to a set of 5
linear equations with 5 unknowns. Now even as the crystal rotates,
the vectors Ip remain unchanged, as they are the vector repre-
sentation of the strain caused by slip on a certain slip system as
expressed in the crystal’s reference system. The vector ao however is
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not constant as the crystal rotates, since it is the vector repre-
sentation of the prescribed strain tensor (fixed in the sample’s
reference system) expressed in the crystal’s system. So the deriva-
tion of Eq. (99) to Eeq leads to:

dyp dao (100)Ip dEeq dEeq
This is a system of 5 linear equations with 5 unknowns: the
derivatives of the slip rates to the macroscopic strain. It can easily
be inverted: the inverse of its coefficient matrix is the matrix U (Eq.
(45)) which is directly available, since U is usually updated each
time a new basis is chosen (see section (5.5)). The right hand side of
the equation must of course be calculated before the inversion is
possible. The vector a0 is obtained from A0, the matrix repre-
sentation of A0 as expressed in the crystal system. Equation (lb)
shows how A0 is obtained from A, which is constant when the
crystal rotates. The columns of the transposed of the transformation
matrix T can be regarded as vectors in physical space, representing
the unit vectors on the reference axes of the crystal (Gil Sevillano et
al., 1980). It follows from this that

TT + dTT (I + R dEeq)TT (101)
in which I is the unit matrix, and R the matrix representation in the
sample’s reference system of the antisymmetrical tensor R of the
lattice rotation (defined by Eq. (6)). R can be calculated for each
optimal basis solution by means of Eq. (8). It follows from Eq.
(101) that

dT’
RSTT (102)dEeq

and, because of the special properties of antisymmetrical tensors,

dT
dEeq T(RS)T= -TR (103)

Derivation of Eq. (lb) applied on A0 yields

dAo dT

dean dEeq
dTTATT + TA dEeq

(104)
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Substitution of Eqs. (102-103) in Eq. (104) leads to (regarding Eq.
(lb)):

dA0
dEeq TARSTT- TRSATT A0R- RA0

The right hand side represents a matrix that can very easily be
calculated for each optimal basis solution. Equations (18-22) then
give its vector representation, which is the right hand side of Eq.
(100). Equation (100) can now be solved; the resulting rates of
change of the slip rates then allow the calculation of the "rota-
tional" part of Eq. (98). A work hardening model is needed in
order to estimate the work hardening term; it can also be decided to
neglect this term. In both cases, the value

dEeq
can be calculated. The optimal basis solution for which this value is
minimal is preferred to the other solutions. Only in rare cases,
several optimal basis solutions are found that are also equivalent
with respect to this second order criterion.

6.5 Strain rate sensitivity

A method to use strain rate sensitivity in order to define a criterion
for selection amongst the various optimal basis solutions of the
Taylor theory will be proposed here. It should however not be
forgotten that these optimal solutions have been obtained while
neglecting strain rate sensitivity. So the model that is presented here
is not a consistent strain rate sensitivity model as the one presented
by Asaro and Needleman (1985) in which all slip systems are
considered as active, not only five.
A variant of the classical power law for the strain rate depend-

ency of the critical resolved shear stress would be:

:’ : oo (105)

in which r and/o are constants (the first with the dimensions of a
stress, the second with those of a slip rate). / represents the strain
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rate exponent. The conventional symbol rn has not been used
because it already has an other meaning in this paper. A typical
value for it is 0.01 for room temperature deformation.

In this paper, the values of thk will be used for r, which then is
particularized for each slip system and for positive and negative
slips. Let us furthermore define

go =/0//eq (106)
which is also a constant. Equation (105) can now be written in terms
of ghk and thk (see Eq. (7)):

g(h______) t

(107)"Chk t(hk) go
Let us now define Ws*, "the rate of plastic work per unit volume
and per unit macroscopic strain rate, according to the strain rate
sensitivity model." It is associated to a particular optimal basis
solution of the Taylor theory, and it is not equal to W or W:

w: (ao8)
k=l

using Eq. (107). This quantity is calculated for each optimal basis
solution of the Taylor theory; the one that leads to the smallest
value is preferred. Such procedure usually eliminates the non-
uniqueness problem.
The Renouard-Wintenberger model (section 6.3) and the strain

rate sensitivity model as presented here exclude each other, since
they both provide in a criterion for choosing the "most appropriate"
optimal solution for the slips.

7 CONCLUDING REMARKS

The concept of a "relaxed constraint" has been defined here in a
more general way then has ever been done before.
The most general formulation until now has been the mixed

boundary conditions as defined by Renouard and Wintenberger
(1976) for the problem of the plastic deformation of a single crystal.
In short, they state that 5 boundary conditions are needed, of which
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there are n stress conditions and 5-n strain conditions. The stress
conditions are of the following nature: the value of n components of
the stress tensor as expressed in the external reference system
(= the sample system in this context) are prescribed.- The nature of
the strain conditions is as follows: the value of the 5- n components
of the strain tensor (in the external reference system) that cor-
respond the non-prescribed stress components is prescribed.

In the terminology of the present paper, the n stress conditions
are "relaxed constraints" since they correspond to non-prescribed
strain components.
Although quite general, Renouard and Wintenberger’s stress

conditions (=relaxed constraints) are limited to the individual
components of the stress and strain tensors as expressed in the
sample’s system. This type of conditions can be achieved by
"relaxed constraints" of the concept defined in this paper. A stress
condition for S3 can for example be achieved by introducing a
relaxation for the component (K)13 Of the prescribed displacement
rate gradient tensor (per unit macroscopic strain rate). See Eq.
(14a) in section 3.3 for this. The new variable gk that is introduced
in this way gives the component (A)3 of the prescribed strain rate
(per unit macroscopic strain rate) its freedom back. This can be
seen by taking the symmetric part of Eq. (15). The corresponding
stress condition is obtained by applying Eq. (76) to the Kk tensor
defined by Eq. (14a), leading to a Renouard and Wintenberger-type
stress condition Eq. (77a). Note that the same result would have
been achieved by a relaxation of the type (K))31; in the theory of
Renouard and Wintenberger (1976), no distinction between these
two cases is made.
The concept of a relaxed constraint as defined here (section 3.3)

is by no means restricted to particular components of the stress or
the strain tensors. Equation (16a) shows a more complex example;
Eq. (77b) gives the corresponding stress condition. Nor is it
restricted to tensors that are expressed in the sample’s system. One
can in principle introduce the relaxed constraints by defining a set of
n tensors K with associated pseudo-slip systems (section 3.3) that

" It would have been better to prescribe n independent components of the
deviatoric stress tensor instead.
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are subject to no restrictions at all, except that they must conserve
the volume and that they better be independent of each other. They
can for example represent a simple shear along the boundary
between a cementite lammella and a ferrite crystal. Such boundary
does in general not have a simple orientation with respect to either
the crystal system or the sample system.
The stress conditions that correspond to such general strain

relaxations are given by Eq. (76).
An entirely new computer code has been developed in which the

mathematical formalism presented in this paper has been imple-
mented. The program has been written in Pascal, which has the
advantage that the code is very readible" it reflects the mathematical
formalism to a high extent by making extensive use of dedicated
data types. Other advantages when compared with the old Fortran
code are:

greater flexibility when introducing for example strain hardening
matrices or other special models;
the use of pointer variables allowed an easier and more reliable
processing of the "linked lists" mentioned in section 6.1 and 6.2
(non-uniqueness problem).

For the rest of it, the new Pascal program approximately conserves
the same speed as the previous Fortran version. Because of the use
of the highly efficient linear programming technique, this speed is
equivalent to that of programs based on the Bishop-Hill method
(see e.g. Gil Sevillano et al. (1980) for details on this method). The
latter have the disadvantage that they do not allow variations of the
CRSS-ratios after each deformation step.
To the author’s knowledge, the treatment of the non-uniqueness

of the Bishop-Hill stress has been implemented for the first time in
a linear-programming type of Taylor code. An interesting applica-
tion would be the fully automatic and exhaustive generation all
Bishop-Hill vertices for a material with any set of slip systems and
any set of CRSS ratios. It would indeed be sufficient to use the
program for finding the slips and the plastic stress for a single
crystal, consecutively specifying a simple shear on each of the slip
systems as imposed strain. For each case, the program would
automatically generate the stress states surrounding the facet of the
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Bishop-Hill yield locus that correspond to the chosen slip system.
After having done this for all slip systems, a list in which all vertices
are present several times is obtained. This list must then finally be
sorted by a sort program and the doubles removed.
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