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On the Reproduction of the Orientation Distribution Function

of Texturized Samples from Reduced Pole Figures Usmg the Conception
of a Conditional Ghost Correction
By .
S. MATTHIES and G.W. VINEL

As it is well understood now from the reduced pole figures P+ (y) measured
in common diffraction experiments, only the reduced part f(g) of the ODF f(g) =
= f(g) + f(g) can unambiguously be reproduced containing, however, ghost
~phenomena /1, 2/. : : -

For the reconstruction of ¥(g) only the condition f(g) 0is an“eXaot point
.of contact. This leads for a nonzero underground ("phon" ~.P)in Pﬁ (¥)toa
var1at1on width of the "ghost corrected“ ODF’ s, - 1 e ‘there ex1sts an infinite
number of fM(g) 2 0all explammg the 1 exper1menta1 P+ (y ) with the same
‘quality /2 to 4/, Moreover, as it was shown in / 5/ the exact 1ntenS1ty of the
rconstant underground F of the ODF 1s of mterest for the f1rst question of a true
quant1tat1ve texture analys1s which part of all crystalhtes in a polycrystalline
sample is randomly d1str1buted and which part prefers Spec1a1 or1entat1ons i,e.
1s textur1zed ? !

-An expedient from th1s S1tuat1on is g1ven by a "cond1t1ona1" ghost correction,

‘,:.l;e by the: formulatmn of a physmally 1ngemous pr1nc1p1e of selection practical-
‘ly admitting only one result. The best would be a single mathematical extreme
pr1nc1p1e -whose formulatmn seems however to be a nontr1v1a1 question. On
the other hand a cond1t1ona1 correct1on w111 automat1ca11y be realized by a re-

] tproductmn ‘method converging only to’ one reSult "All known iterative methods /2/
91e1d1ng a fM g) = 0 contain arbitrary degrees of freedom injuring the unam-
';,,blgulty or “extrem1ty" of the result.

The most 1mportant components of the reproduction method sketched below

sare at first the zero approximation of the ODF already performing the condition
2 0 and possessmg all properties of symmetry of the ODF. Secondly the used

_ 1) Postschheﬁfach 19, DDR-8051 Drésden, GDR.
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iteré.tive procedure automatically maintains these properties. In the third place ‘
the "principle of the maximum phon F" is used selecting such a fM (g) whose phon {° i

(F £ P) is the highest one in comparison with F of other possible re§u1ts. Ad- m\f(g) n
ditionally a result with a minimum number of intensive peaks in the ODF:is pre- -

ferred. ‘N is the number

The starting point of our consideration in order to construct a good zero ap- ;g;tondition (v velo

proximation of the ODF was the function /3, 6/ i mn o
N
S o B ” * ¥ 3 -1 20> 42
1By &)= 2 4 (eg By, gl/Ng, 1(h,g)=Pp (g -h)=0, (1) § After that the m+
1= i i :

3 the number of the

-
ions hy 4

whose linear superposition about all possible ﬁi leads to the function 'f'l (g):
: I R |
lim Sy (3 ~ _ >0
) S i§=—‘—]|_ fl(hi’ g1~ fl(g) = Iy () + fqr.(g) =0, (2)

'containing, however, ghosts because ’fi(g) remains in the class of functions f . If 47
the sums in (1) and (2) are changed by products this is no more valid. Represent--§4: -
ing such a (product) function by series of spherical functions there will arise |
terms with odd 1, too, just necessary for the asked reconstruction of T(g). _

Our method is given by the following general relations: n  step number of an 1
inner iteration(n =0, 1, 2, ..., N); m step number of the outer (phon-) itera- :
tion(m=0, 1, 2, ..., M} f)ﬁi(-§j) experimental valuels; i=1,2, ..,Lj=1,

. 2’ e J;

, I' M. med. The end

1 o m i sn -1 1/M;| r/1 4 i
m D+ @) = me mfn(g) fo(g TI 1"]1 (mpllﬁ € - ﬁm )) /M| x/ @) 4 ‘The ratio of tI
. ‘ i=1 |m,= i i ’ ’ be controlled
_ 5 - »epend_ence on
m-N W(g) = N W) , my - 8@ - F) fW(g)dg H (4) ures an optimu
I M S ' - st peaks" than

| 1/M; : o ,
MmOy = N 1_[1 ﬂ (mP'ﬁ (g - Hm ) /M| /1 ; () narrow peaks
i= = i i '

The subdivisic

' “Jzven by the expe:

mfn( {87 f 0}) g | '. Ependently of the
' ' iesolution power «

%
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After that the m+1

vr'l"'. =_

r if one of the conditions ™R >m'1R

£nost peaks" than forr =

pendently of the cell structure of the Y-
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B D) =B -"F, °F-o, P emin Mg}
1 1
"1e) =M1 @)+ F

N is the number of the last step‘in the inner iteration if forn = N the followmg
condition (v velocity of convergence, e.g. V

" - 100%- Z Z Bs M@) - P2l ) m (9 )-1-a||=5v,

3 h. Vj h, j

i=1 j=1 i i (8)
-th step of the outer iteration will be started with n = 0. M is
he number of the different equlvalent (crystal Ssymmetry G ) projective d1rec-
onshf gp - h(k—l 2, N)ofthesort1w1thh*=(1}* *) 0s 17*"<—.
: k

= 0.3%) is performed:

, 0% cp <. E.g. for cubic crystal symmetry (GB = 0 NB =24) we

Aave(1—1)h1-(1 0, 0), M, —3w1thh 1=, 0, o),ﬁ 5 =(0, 1, 0),
ndB _o=(0, 0, 1). !
my
mlgﬁ._(if')=mf’y(§)+"m ;
1
MR _1007\- IZ }Jj (§+(S’)-mﬁ+(?)y[ﬁ+(§)-l-d] (9)
O1=11hij B3 UhyYy H .

R, M is the number of the last step in the outer iteration for a fixed m = M

F- P = min P* (. )} is per-
rmed. The end result is given by £\ (g) = ( ). i

. The ratio of the height of the "true" peaks to the height of the "ghost peaks"

n be controlled in the zero approximation with the help of the pa

rameter r.
dependence on the "sharpness"

of the texture or the phon value P in the pole

ures an optimum velocity of convergence or (r >1) a better "oppression of

1 can be reahzed what is important for a great P

: The subd1v1s1on of the Y-space into cells with the angular extent Ay is

en by the experiment, The G- -Space is also subd1v1ded into cells (ag = Ay) in-

Space. However, the attamable real
olution power of f (g) itself depends on I and the sharpness of the texture

e /4/).
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Mathematically pure zeros in the experimental pole figures which do prac-
tically not occur in reality determine the "zero range" G of the G-space with
the help of °t%(g") = 0 (see (5) for m = 0). Allg'€ G, w1th the exact result
fM (g') = 0 will be stored and will not be dealt with in the next iteration steps.
I.e. there will not arise zeros in the denominator of (3). Analogically expres-
sions (8) and (9) are to be managed.

Our approach can in principle be modified for incomplete pole figures, too.
The sketched method was realized in a computer program for the case of
cubic-orthorhombic symmetry. Already the first methodical tests have yielded
impreSsively.good results (R-values, degree of ghost correction, and velocity
of convergence). ‘An example demonstrating the efficiency of the method will
be given in a second note. , '

At the end for completeness we have to add that a "product variant" for a
zero approximation of the ODF was firstly utilized by Williams /7/ and that the
inner iteration contains an element of the "self-consistent approach" suggested
by Imhof /2/.

The authors would 11ke to thank Dr. M. Betzl, K. Helmmg, Prof. Dr.

K. Hennig, and Dr. A, Miicklich for their support and interest in the present
subject as well as the staff of the computer centre of the ZfK whose manysided
help made it possible to realize the method in the relatively short time of

some months,
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An Example Demonstrating 4 New Reproduction Method of the ODF

act result

rration steps.:

;ically exprés‘ : of Texturized Samples from Reduced Pole Figures
' By | ,
S. MATTHIES and G.W. VINEL

le figures, too

h ' - ' 7
e case of he general structure of the reproduction method suggested by the authors was

sts h ielde .
s have yleld escribed in /1/. The following example using the denotations of /1/ has to
, and veloci .

e emonstrate the efficiency of this method. Regarding the mentioned CPU time
: method wil

should be remarked that in the current methodical phase no activities were

A

ariant" for '
or a "true" ODF f(g) (unknown for the reproduction) is given, con-

/1/ and that tl
»ach" suggeste

InFig. 1a
iructed with the help of standard functions of Gauss-like (G)/2/ and Lorentz-
ike (L) /3/ form yielding exact numerical values. The same concerns the pole

Prof. D gures of Fig. ZaZ) following from f(g) and which are to be considered as "ex-
rof. Dr. ,

rimental" pole figures.
in the present

The parameters of the model ODF are (cubic-orthorhombic symmetry):
f(g) = 0.315 Py(L)+ 0.315 P (L) + 0. 0605 III(G)+ 0.3095;

= {011} <211> P = {132} <643>, P = {121} (111>
ith a full width -at half maximum b =179 for all three components.
In Fig. lbz)
shown using only the three pole figures (100), (110); and (111) of F1g Ja for

108e manyside

ort time of

the ODF fM(g) is given resulting from our method. Here the case

e reproduction. Fig. 2b: 2) contains the pole figures derived from f (g) In
2)
ig. 3

ould be the result of the common Bunge-Roe method in the ideal case (I>»1).

kyo 198.1,‘
‘ the reduced ODF f(g)(calculated by standard functions) is given, which
inalyse,
Characteristic parameters of the calculation: Ay =Ag = 50, I1=3, V=0.3%,
=1; m=0(N=11, °R=1.29%, °F = 0} m=1 (N=13, 'R=1.00%, 'F=
0.435 m=2 =M (N=14, °R =1.071%, *F = 0.53) °F = 0.55. Etfective
,.;' in f(g): 0.54 P = 0.55. CPU time: 42 min (ES-1040)% necessary memory
pace 400 K. Using I = 4 wegot M =2, 2R 1.018%. '

1) PostschlieBfach 19, DDR-8051 Dresden, GDR.
2) Figures see on the following pages.
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Fig.1a. The model ODF f(g) unk’nowﬁ for the reproduction problem

Numerical material concémmg Fig. 1, 2, or 5 is available from the authors :
for interested specialists who would hke to test their own reproduct1on prOgI“lm's
or procedures of ghost correction

1b. The :
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€. 1b. The reproduced and ghost corrected ODF M) for1 = 3
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Fig.2a. The "experimental" pole figures i”gi(S’) derived from f(g) : Flg %, The "theore
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Fig.2b. The "theoretical® pole figures derived from fM(g)
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Fig. 3. The reduced ODF ¥(g) containing ghost phenomena

/3/ 8. MATTHIES, phys. stat. sol. (b)112, 705 (1982). | 1]
. | (Received June 18, 1982 13




