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Description of Crystallite Orientation in Polycrystalline Materials. 
III. General Solution to Pole Figure Inversion 

RYONG-JOON ROE 

Electrochemicals Department, E. I. du Pont de Nemours Company, Inc., Niagara Falls, New York 

(Received 23 October 1964) 

A method is presented here by which orientation distribution of crystallites in anisotropic polycrystalline 
samples can be derived from a set of plane-normal distributions obtained by x-ray diffraction measurements. 
It is the generalization of the similar procedure proposed previously for analysis of samples having fiber 
texture. It thus represents a completely general solution to the problem of pole figure inversion, applicable 
to samples having any arbitrary symmetry elements. The plane-normal distribution function is expanded in a 
series of spherical harmonics, the coefficients of which, Qlm', can be determined by numerical integration of 
experimental diffraction data. The crystallite distribution function is expanded in a series of generalized 
spherical harmonics which appear as solutions to the Schrodinger wave equation of a symmetric top. The 
coefficients of the crystallite distribution function, Wlmn, are then obtained as linear combinations of Qlmi. 
Sy=etry properties of Wlm" arising from crystallographic or statistical symmetry elements existing in the 
sample are examined. The methods of estimating the series truncation errors and of minimizing the ex­
perimental error by a least-squares method, previously proposed in connection with fiber texture analysis, 
are still applicable here with appropriate generalizations. In addition it is shown that the effect of diffraction 
line broadening due to finite size or imperfection of crystallites can also be allowed for at least approximately. 

I. INTRODUCTION 

I N anisotropic polycrystalline materials, such as 
fibers, polymeric films, and rolled metals, knowledge 

of the distribution of crystallite orientations is often of 
theoretical and practical importance. When measure­
ments are made on the variation of diffracted x-ray 
intensities, at a fixed Bragg angle, as a function of the 
relative orientation of the sample with respect to the 
diffractometer geometry, one obtains information con­
cerning the orientation distribution of the particular 
crystallographic plane concerned throughout the sample. 
Such data are often presented as a stereographic projec­
tion of the plane-normals, which is called a pole figure 
diagram.1 A collection of such diagrams, each pertaining 
to a different plane-normal, does not, however, reveal 
the crystallite orientation distribution directly by itself, 
since the correlations between the diagrams, demanded 
by the lattice structure of the crystallites, are not 
brought out explicitly. The present work is concerned 
with the method of deriving the quantitative represen­
tation of the crystallite orientation distribution by 
reduction of a set of x-ray diffraction data such as pole 
figure diagrams. The resulting distribution function can 
be interpreted as the analytical or numerical representa­
tion of the inverse pole figure. 2•3 The latter is obtained 
if we imagine that all the crystallites are rearranged so 
as to have their crystallographic axes coinciding and 
then the corresponding distribution of the reference 
axes of the sample is plotted. Earlier attempts at devis­
ing procedures for constructing the inverse pole figure 
either involved a trial and error method40r were confined 

1 H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures 
(John Wiley & Sons, Inc., New York, 1954), Chap. 10. 

2 G. B. Harris, Phil. Mag. 43, 113 (1952). 
3 M. H. Mueller, W. P. Chemock, and P. A. Beck, Trans. AIME 

212, 39 (1958). 
4 L. K. Jetter, C. J. McHargue, and R. O. Williams, J. Appl. 

Phys. 27, 368 (1956). 

to cubic crystals. 5 In a previous paper6 (Part I of the 
present series) we have proposed a general method of 
pole figure inversion applicable to samples having fiber 
texture. In a subsequent paper7 (Part II) the method 
was successfully applied to analyzing the crystallite 
orientation distribution in uniaxially strained samples 
of crosslinked polyethylene. The method is now ex­
tended so as to apply to all anisotropic materials without 
the restriction of cylindrical symmetry. It thus repre­
sents a completely general solution to the problem of 
pole figure inversion. 

Efforts have been made here to preserve the notations 
used in the previous papers, 6, 7 but some minor changes 
were unavoidable. The most important among them is 
the revised definition of Plm(z) for negative values of 
m (see Appendix). In any case all the symbols are re­
defined here in order to make this paper self-contained. 

II. CRYSTALLITE ORIENTATION DISTRIBUTION 
FUNCTION 

The orientation of a crystallite in the polycrystalline 
sample is specified by means of Eulerian angles (J, If, 
and cpo In Fig. 1, O-xyz is the system of orthogonal refer­
ence axes arbitrarily fixed in the polycrystalline sample 
and O-XYZ is the same fixed in the crystallite. The 
angles (J and If define the orientation of the crystallite 
Z axis in the sample space, and cp specifies the rotation 
of the crystallite around its own Z axis. A more detailed 
definition of these angles is given in Part I. (J, If, and cp 
defined here are equivalent to {3, a, and /" respectively, 
given in the book by Margenau and Murphy.s The 

6 H.'J. Bunge, Monatsber. Deut. Akad. Wiss. Berlin 1 27,400 
(1959); 3, 97 (1961). ' 

6 R.-J. Roe and W. R. Krigbaum, J. Chern. Phys. 40 2608 
(1964). ' 

7 W. R. Krigbaum and R.-J. Roe, J. Chern. Phys. 41, 737 (1964). 
8 H. Margenau and G. M. Murphy, The Mathematics of Physics 

and Chemistry (D. Van Nostrand Company, Inc., New York, 
1943), p. 272. 
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DESCRIPTION OF CRYSTALLITE ORIENTATION 2025 

orientation distribution function of all crystallites in the 
sample is then represented by w(~,1{1,4», where 

~=cosO (1) 
and 

(2) 

Next we consider the ith reciprocal lattice vector ri 
belonging to a crystallite. The orientation of fi with 
respect to the crystallite coordinate system O-XYZ is 
given by the polar angle e. and the azimuthal angle <Pi 
(see Fig. 2). Similarly, the orientation of fi with respect 

to the sample coordinate system O-xyz is specified by 
the polar angle Xi and the azimuthal angle 1]. (see Fig. 
3). The two sets of angles (e,,<p.) and (X i ,1]') referring 
to the same vector r i can be related to each other through 
Eq. (3) which describes the transformation of cartesian 
coordinates accompanying the rotation of coordinate 
axes by 1{1, 0, and 4>. 

[

SinXi COS1]i] [Sine; cos<P.] 
sinXi sin1]. = T-l(1{I,0,4» sine. sin<Pi , 

cos Xi cose. 
(3) 

where 

[ 

cos1{l cosO co84>-sin1{l sin4> sin1{l cosO co84>+cos1{l sin4> 
T(1{I,0,4»= -cos1{! cosO sin4>-sin1{l co84> -sin1{l cosO sin4>+cos1{l coS!/> 

cos1{l sinO sin1{l sinO 

- sinO -coS!/>] 
sinO sin4> . 

cosO 
(4) 

The angles e. and <Pi can be calculated for each Miller 
index (hkl) from the unit cell dimensions and the crys­
tal class of the crystallites. The angles Xi and 1], specify 
the relative orientation of the sample with respect to 
the incident and diffracted x-ray beams. Let I(t,,1]i) be 
the intensity of diffracted x-ray measured (at a fixed 
Bragg angle) as a function of the orientation of the 
sample and then corrected for various aberrations. Here 

(5) 

The plane-normal orientation distribution qi(t ;,1].) is 
then obtained by normalization of the intensity function 
I (t ;,1].); thus 

q.(t',1J,) = I (ti,1J,) / trjl I (ti,1]i)dtid1Ji. (6) 
Jo -1 

Various intensity corrections required for the purpose 

y 

J( 

x 
FIG. L Diagram illustrating the Eulerian angles f, e, and <I> 

which specify the orientation of crystallite coordinate system 
O-XYZ with respect to sample coordinate system O-xyz. 

have recently been examined in detail by Bragg and 
Packer.s 

Our purpose is to develop a procedure by which we 
can deduce the crystallite orientation distribution 
wa,1{I,4» from the set of plane-normal orientation dis­
tributions qi(ti,1Ji) obtained experimentally. For this 
end we expand qi(ti,1]i) and w(~,1{I,4» in a series of 
spherical harmonics and generalized spherical harmonics, 
respectively: 

'" I 
qi(ti,l7i) = 'E 'E QlmiP{"(ti)e-imVi (7) 

1=0 m=-! 

and 

'" I 1 
w(~,1{1,4»= 'E 'E 'E WlmnZlmnWe-im,ye-in</>. (8) 

1=0 m~ln~1 

z 

\ 
'( 

8 , 
\ 
\ 
\ 
&--- y 

/0 

/ 
/ -,. ...... _--<1>, 

x 
FIG. 2. Diagram illustrating the angles @; and <1>, which specify 

the orientation of a reciprocal lattice vector f, with respect to 
crystallite coordinate system O-XYZ. 

9 R. H. Bragg and C. M. Packer, J. App!. Phys. 35, 1322 (1964). 
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2026 RYONG-JOON ROE 

z 

x 
f / (lor,) 

----------f12J. 
o ................... 

'l1,;----r 

FIG. 3. Diagram illustrating the angles Xi and 7/i which specify 
the orientation of a reciprocal lattice vector ri with respect to 
sample coordinate system O-xyz. 

Here Pr(t) is the normalized associated Legendre 
function, and Z Imn (~), defined in Appendix, is a generali­
zation of the associated Legendre function. The coef­
ficients Qlmi and W lmn can be determined by 

(9) 

and 

The establishment of the relation between w(~,1/I,cp) and 
the set of qi(ti,'1/i) then amounts to finding the relation 
between the two sets of coefficients Wlmn and Qlmi • 

One can showlO that Eq. (3) is equivalent to 

(11) 

where 
(12) 

Equation (11) is a generalization of the Legendre addi­
tion theorem. By multiplying both sides of Eq. (11) by 
w(~,1/I,cp) qi(ti,T/i) and integrating over the whole ranges 
of ~, 1/1, cp, ti, and '1/i, we obtain 

(13) 

When the values of Qlm i are known, then for fixed values 

10 M. E. Rose, Elementary The01'y of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), Chap. 4. 

of I, m, and i, (13) is a linear equation (on a complex 
plane) with (21+1) unknowns, W lmn (n=-I, ... , I). 
If measurements are made for (2/+1) reciprocal lattice 
vectors and the corresponding Qlmi detennined, the 
(21+ 1) simultaneous linear equations (with fixed I and 
m) can then be solved to give W 1mn• Conversely, once 
all the W lmn are known, the function qi(ti,'1/i) for any 
reciprocal lattice vector fi can be obtained through use 
of (13) and (7). If N is the total number of reciprocal 
lattice vectors for which qi(ti,T/i) have been measured, 
then W Imn can be determined in general for 1 up to at 
least (N -1)/2, and the crystallite orientation distribu­
tion is approximated by a corresponding truncated 
series instead of the infinite series (8). The error intro­
duced by truncation of the series can be estimated by 
the method given in Sec. IV. When the sample possesses 
symmetry elements, many of the W Imn are no longer 
independent and some of them are identically equal to 
zero. Thus in most cases the largest value of I, for which 
W 1mn can be detennined, far exceeds the minimum 
(N -1)/2. The symmetry properties of the coefficients 
will be examined in Sec. V. 

Although, as stated earlier, the crystallite and sample 
reference systems, O-XYZ and O-xyz, can be chosen 
arbitrarily, the full benefit of the simplification arising 
from symmetry will be realized if the axes are chosen to 
coincide with as many symmetry elements as possible. 
If, after all the W 1mn have been already determined, it 
is desired to choose a new crystallite reference system 
O-X'Y'Z', the new set of expansion coefficients W lmn' 

can be obtained as a linear combination of W 1mn• Sup­
pose the new reference system O-X'Y'Z' is obtained by 
rotation of O-XYZ by a, (3, and ,¥, the latter being)he 
three Eulerian angles defined in the sense of Margenau 
and Murphy.8 If we denote the polar and azimuthal 
angles of fi with respect to O-X'Y'Z' by e/ and cI>/, then 

sine; sin<I>i = T-l(a,{3,,¥) sine/ sincI>/ (14) 
[

sine; COScI>i] [Sine;' COScI>/] 

cose. cose;, 

which leads to 

(15) 

Substitution of (15) into (13) then gives 

(16) 

Similarly, if the sample reference system O-xyz is rotated 
by a, {3, ,¥, the expansion coefficients W Imn" of the crystal­
lite orientation distribution referred to this new system 
is given by 

( 
2 )1 I 

W Imn" = -- L W IpnZ Ipm (cos{3)e-ipae-im-y. 
21+1 p~l 

(17) 
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DESCRIPTION OF CRYSTALLITE ORIENTATION 2027 

For the purpose of computation it is more convenient 
to have equations involving real quantities only. If we 
write (18) 

(19) 

then Eqs. (7), (8), and (13) can be re-written in the 
following forms: 

'" I 
Qi(ti,7}i)=.i:, L PZm(ti) 

l-Om~l 

00 I I 

w(~,1ft,CP)= L L L ZlmnW[A 1mn cos (m1ft+n4» 
1=0 m~!n~1 

+B1mn sin (m1ft+n4»], (8a) 

X[A 1mn cosn¢i-BZmn sinn¢i], (13a)1l 

(13b) 

The number of terms in the above four equations can 
in fact be much smaller than those indicated by the 
forms of the equations, since the symmetry relation 
existing among the real expansion coefficients was not 
taken into account explicitly in writing them. Because 
of the symmetry properties of pr(z) and Zlmn(Z) given 
in Appendix, we see from (9) and (10) that 

Qlm= (-1)mQ1m*} 
alm= (-l)malm (20) 
f3zm= (_I)m+lf3lm 

and 
Wlmn= (-I)m+nw1mn*} 
Almn= (-I)m+nAlmn, (21) 
Blmn= (-1)m+n+lB zm ;; 

where m= -m and * denotes the complex conjugate. 
More symmetry relations among the coefficients will 
arise if the sample possesses crystallographic and sta­
tistical symmetry elements. 

III. METHODS OF IMPROVING THE ACCURACY 

Aside from the error arising from truncation of the 
series in Eq. (8), the accuracy of the function w(~,1ft,CP) 
is affected by experimental errors in determining the 
plane-normal distributions Qi(ti,7}i). Three useful pro­
cedures for minimizing the latter effect are described 
here. 

The discussion in Sec. II was based on the tacit as­
sumption that the function qi(t i,7}i) obtained by normali-

11 Equation (11a) of Part 16 contains an error. The + sign in 
front of BIm ought to be replaced by a - sign. 

zation of intensity distribution [Eq. (16)J represents 
the true orientation distribution of a given plane-normal. 
A cause of deviation from this idealization, encountered 
more frequently in the case of polymers, is the smearing 
effect due to line broadening. When the crystallites are 
very small and imperfect, the reflection from a set of the 
ith crystallographic planes belonging to a single crystal­
lite is no longer sharp, but gives rise to a smeared dis­
tribution of x-ray intensities, which has a maximum at 
the particular setting of the diffractometer geometry 
corresponding to @;o, ¢io, and riO computed from the 
idealized unit cell dimensions. In other words the re­
ciprocallattice belonging to ri is no longer a geometric 
point but occupies a finite volume in the reciprocallat­
tice space. Suppose then that we know or can estimate 
the distribution of the density of the reciprocal lattice 
belonging to ri, and represent it by hi°(,S,i,¢i,ri)' Since 
here we are not concerned with line broadening with 
respect to the Bragg angle, it is convenient to redefine 
the reciprocal lattice density distribution function 
hi('E:i,¢i) by 

hi (':Ei,¢i) = { ht (':Ei,¢i,r i)dr i 
J Ari 

(22a) 

or 
(22b) 

depending on whether the intensity data are collected 
by integrating over a range of Bragg angles or at the 
peak Bragg angle. If we now multiply both sides of 
Eq. (13) with hi('E:i,¢i) and integrate over the whole 
ranges of 'E:i and <Pi, then [assuming the normalization 
of the hi('E:i,<P,) function] we obtain 

(23) 

(24) 

The coefficients Wlmn can now be determined by solving 
the system of linear equations (23) (i= 1, "', N) 
instead of (13). Equations corresponding to (13a) and 
(13b) can be obtained by decomposing Hlni into a real 
and imaginary part. 

Next, if the reciprocal lattice vector ri is composite6.12 

in the sense that there are several independent reciprocal 
lattice vectors ril, ri2, •• " rij having so nearly the same 
Bragg angle that they cannot be resolved, then we can 
define the composite distribution of reciprocal lattice 
density by 

where 

hi (':Ei,¢i) = L Cijhi;('E:i,¢i), 
i 

Cij= (Fij)2j"E,(Fi,j)2, 
i 

12 R. A. Sack, J. Polymer Sci. 54, 543 (1961). 

(25) 

(26) 
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2028 RYONG-]OON ROE 

Pi! being the structure factor of lij. Then Eq. (23) still 
holds with the modification that 

Hlni= I: C;jH1nij 
j 

with Hlni} defined analogous to Eq. (24). 

(27) 

Finally we can employ the method of least squares6,12 

to solve the over-determined linear equations (23) 
when N is larger than the number of unknowns W lmn. 

If we assign a weighting factor Pi to each observed 
qi(ti,YJi) according to its estimated accuracy, then by 
applying the standard least-squares criterion we obtain 
a new set of simultaneous equations 

N 

xI: p;HlniHlvi* (v= -I, "',1). (28) 
i=l 

If the sample possesses symmetry, Eq. (Z8) is simplified 
accordingly and the number of equations in the set is 
reduced. Decomposing Eq. (28) into a real and imagi­
nary part, one can easily obtain corresponding equations 
involving real quantities only. 

IV. ESTIMATING THE TRUNCATION ERROR 

The general line of discussion presented in the previ­
ous paper6 for estimating the series truncation error 
can be applied to the present, more general case without 
any major modifications. Only a brief outline is given 
below, mainly in order to list the revised equations ap­
propriate to the generalization. 

If in the series expansion of q(t,T/) in Eq. (7) all the 
terms with l higher than A are arbitrarily neglected, 
then the standard deviation U q of the truncated series 
can be determined by 

where the first term in (30) can be evaluated numeric­
ally by integrating the square of the observed q(t,T/) 
function. Next we want to represent the truncation 
error in w(~,1/t,cf» by the standard deviation U w which is 
defined by 

'" I I 
=4w-2 I: I: I: WlmnWlmn*. (32) 

1=1-+1 m=-/ n=-I 

An approximate estimate of the quantity in (3Z) can 
be obtained by the following consideration. We first 
consider the value of QlmQlm * averaged over all recipro­
cal lattice vectors accessible to measurement. If we 
make the approximation that these vectors are fairly 
uniformly distributed with respect to Z and ~, then it 
can be shown6 by use of Eq. (13) that the following 
relation holds: 

(QlmQlm*>"-'zr(-Z-) t WlmnWlmn*. (33) 
Z[+1 n=-I 

Substitution of (33) into (32) leads then to 

00 21+ 1 I 

uvP""Z I: -- I: (QlmQlm*). 
I-HI 2 m~1 

(34) 

The sum at the right-hand side of (34) can in principle 
be evaluated from experimental data up to any desired 
value of I, although in practice it might be more conveni­
ent to resort to an extrapolation procedure similar to 
that employed in Part IJ.7 

V. CONSEQUENCES OF SYMMETRY 

The amount of computation required to obtain 
w(~,1/t,cf» is frequently much smaller than is apparent 
from the previous equations, if we take into account 
symmetry relations existing among the coefficients. 

Friedel's law requires that the observed diffraction 
data always possess centrosymmetry. In other words, 
the relation 

(35) 

holds identically. Expanding both sides of (35) in a 
series of spherical harmonics and utilizing the property 
of associated Legendre functions 

pre -t)= (_1)I+mP1m(r), (36) 

we find that 
(37) 

This requires Qlm be identically zero when I is odd. Since 
in Eq. (13) Qlm is given as a linear combination of WZmn 

with arbitrary coefficients, we further conclude that 
W 1mn is also identically equal to zero when I is odd. In 
the discussions to follow it will be understood that only 
coefficients with even values of I are being considered. 

Certain types of symmetry elements in the statistical 
distribution of crystallites are introduced into the sample 
in its fabrication process regardless of the nature of 
crystallites. For example, in a uniaxially stretched 
sample there is cylindrical symmetry around the axis. 
Again, when a material is stressed in two mutually 
perpendicular directions, the sample will have a set of 
three mutually perpendicular mirror planes. The conse­
quences of these statistical symmetry elements on the 
symmetry properties of q(t,f/), Qlm, and W 1mn are listed 
in Table I. Most sheet or film samples encountered in 
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DESCRIPTION OF CRYSTALLITE ORIENTATION 2029 

TABLE 1. Symmetry properties of Qlm and WI",,, arising from statistical symmetry of crystallite distribution. 

Statistical symmetry element 

Mirror.l..x 

Mirror.l..y 

Mirror.l..z 

All these mirrors present 

Cylindrical symmetry around z 

=q(r,1r-.,,) 

=q(r, -,,) 

=q(-r,,,) 

practice have the orthogonal biaxial symmetry and in 
such cases we have all Qlm and WI",,, equal to zero when 
m is odd, and moreover 

A~~::~: .. = (-l)nAzmn= (-1)"A 1mn }(m even). 
Blmn=Bm.n= (_l)n+lB'mn= (_l)n+lBlmii} 

(38) 

, The crystallographic symmetry elements existing in 
the individual crystallites again impose symmetry 
properties to the W 1m .. coefficients. If the crystallites 
possess a mirror plane of symmetry perpendicular to the 
X axis, then two reciprocal lattice vectors having coordi­
nates (e,<I» and (e, 11'-<1» are equivalent, giving rise to 
identical plane-normal distributions. Substituting these 
angular coordinates of the two vectors in tum in (13) 
and comparing the resulting two expressions, we find 
the following relation to hold: 

(39) 

The consequences of various crystallographic symmetry 
elements, worked out in the similar way, are listed in 
Table II. By combining the symmetry elements listed in 
the table, we find, for example, that orthorhombic 
crystals will demand 

=0 

n even}. 

nodd 
(40) 

If, in addition, the sample has orthogonal statistical 
symmetry as in films, then the overlap of the two kinds 
of symmetry imposes the requirement that W 1m" is real 
and vanishes unless both m and n are even. 

VI. DISCUSSION 

The procedures required in practice to obtain the 
crystallite orientation distribution of samples having 
fiber symmetry were outlined in Part 16 and were il­
lustrated with their application to polyethylene data in 
Part II. 7 The basis steps require for application of the 
present generalized method remain essentially the 
same, The amount of data and computation will of 
course have to be considerably greater when the simpli-

=Q'm 

= (-l)mQlm 

{
;:ofO, m even 
=0, m odd 

{ = Qlm, m even 
=O,m odd 

{
;:ofO, m=O 
=O,m;:ofO 

= Wlm" = (-l)m+nW*lmn 

= (-l)"'Wrmn= (-l)"W'lmii 

{
;:ofO, m even 
=0, m odd 

{
=Wrm,,=(-l)nW*lmilm even 
=0, m odd 

{
;:of 0, m=O 
=0, m;:ofO 

fying restriction of fiber symmetry is removed. The in­
crease in labor parallels that of going from two­
dimensional to three-dimensional Fourier synthesis in 
crystal structure analysis. The current improvement in 
x-ray diffraction apparatus, especially automation of 
intensity data collection, and easier access to fast, 
large-scale electronic computers bring the application of 
the present method well within the realm of practica­
bility. The coefficients of Jacobi polynomials appearing 
in the Zlmn(Z) functions can easily be generated and 
stored in a computer. 

When a complete description of the crystallite orien­
tation distribution is not desired, the present method 
can still be utilized to obtain WZm .. for low values of 1 
only. The frequent practice of characterizing orientation 
of crystallites by (cos28) alone amounts to evaluating 
only W 200. W 1m .. , in effect, represents the value of a 
certain polynomial of trigonometric functions of 8,1/1, and 
cp, averaged over all orientations of crystallites [see 
Eq. (10)], and the evaluation of a limited number of 
W lmn corresponds to the common procedure of specify­
ing a distribution function ~by the first few of its 
"moments." 

Jetter, McHargue, and Williams4 indicated that the 
crystallite orientation distribution in rolled sheets might 
be specified by a set of two inverse pole figures, each 
describing the distribution of a specified reference axis 
of the sample such as rolling and transverse directions. 
Each of these can in practice be obtained' by construct­
ing the inverse pole figure from x-ray data which were 
rendered to have fiber symmetry by rotating the sheet 
sample rapidly around the reference axis. The inverse 

TABLE II. Symmetry properties of Wlmn arising from 
crystallographic symmetry of crystallites. 

Crystallographic 
symmetry element 

Mirror .LX 

Mirror .LY 

Mirror .LZ 

r-fold rotation sym­
metry around Z 

Vector equivalent 
to (8.'1» 

(8,.--'1» 

(8, -'I» 

( .. -8,'1» 

(8'H2~) 
(j=1,2, .. ·.r-1) 

Wlm71 

= (-l)"W!mu =( _1)mW*zmn 

=Wlm'; = (-l)m+nW*rmn 

{
;CO, n even 
=0, n odd 

{ 
'"'0, n is mUltiple of r 
-0, otherwise 
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pole figure thus obtained by deliberate averaging, then, 
corresponds to the simplified function obtained by 
integrating w(~,1/;,¢) with respect to 1/;. It is, however, 
not any more informative than any single pole figure or 
plane-normal distribution, since the latter can be ob­
tained in effect by line-integration of w(~,1/;,¢) along a 
certain path. It is then clear'! that a collection of a finite 
number of these restricted inverse pole figure cannot pro­
vide a full description of poycrystalline texture, in 
much the same sense that a collection of pole figure dia­
grams itself does not reveal the same directly. In this 
connection we might mention that the term "inverse 
pole figure" is not a logical one fordescribing any possible 
graphical representation of the crystallite orientation 
distribution for samples not having fiber symmetry. 
For, in such instances, the orientation of the sample 
reference axes with respect to the crystallographic axes 
can no longer be represented by a pole on a unit sphere 
but requires the further specification of a third 
parameter. 

The reciprocal lattice density distribution or the 
"smearing" function h('Z/f» (Sec. III) is usually not 
known beforehand. However, if we assume a spherically 
symmetric distribution of the density in the reciprocal 
space around the "ideal" lattice point, then we may be 
able to estimate h('Z,if!) from the observed linebroaden­
ing in the Bragg angle direction. Or conversely, one may 
express h('Z/f!) by an empirical equation containing a 
few adjustable parameters and then find the best values 
of these parameters by trial and error until the two sets 
of Qlm\ that is, one obtained directly from experi­
mentally observed qi(k'i,7Ji) by use of (9) and the other 
recovered from w(~,1/;,¢) by use of (13), attain best 
agreement with each other. This can be done in the 
same way as the component contributions Gij to a com­
posite plane-normal distribution were adjusted by trial 
and error in Part 11.7 The smearing function thus ob­
tained may shed some light on the strain-induced modi­
fication of the size and lattice structure of the crystallite. 
The smearing function in the present method plays, in 
a way, the role of the temperature factor arising in 
crystal structure determination by Fourier synthesis. 

APPENDIX 

The function ZlmnW is given by a solution of the 
differential equation 

d2Z dZ 
(1-r)--2~ 

dr d~ 

[ 
m2-2mn~+n2J 

+ 1(1+1)- Z=O. 
l-r 

By making the substitutions 

t= (1-~)/2, 

Z= Nt(m-n)/2(l-t) (m+n)/2f(t) 

(A1) 

(A2) 

(A3) 

into (Al), we obtain 

t(t-1) (d2 f/dt2)+[(m-n+ 1) - ZmtJ(df/dt) 
+[l(l+l)-m(m+1)Jf=O. (A4) 

A solution to (A4), when m~n, is given by 

f(t)=~1(-1+m,l+m+1im-n+1i t) (m~n), (AS) 

where ~ 1 is the hypergeometric function defined by 

When a is a negative integer, the series in (A6) termi­
nates after a finite number of terms and the resulting 
polynomial is called a Jacobi polynomiaJ.13.14a The 
constant N in (A3) is determined from the normalization 
condition 

so thatlO 

(
Zl+l)(l+m)!(l-n)! 1 

iV1mn2= -Z- (l-m)l(l+n)! [(m·---n)-!]-2· (A8) 

When m~n, the relation -n~ -m holds. Then replac­
ing m and n in (A3), (AS), and (A8) by -n and -m, 
respectively, and utilizing the relation15 

~l(a,{3i ')Ii t)= (l-t)')'-a-{3~l(')I-{3, ')I-ai ')Ii t), (A9) 

we find that 
Zlmn=Zliim' (AlO) 

In order to find Zlmn for m< n we note that equation 
(Al) is unchanged when m and n are interchanged. Thus 
the solution Zlmn is identical to ±Zlnm. The ambiguity 
with respect to the sign arises because the normalization 
procedure (A7) does not determine the sign uniquely. 
We then adopt the convention that 

Zlmn= (_l)m+nZlnm 

from which it follows that 

Zlmn= (_l)m+nZlmii' 

(All) 

(AlZ) 

The Jacobi polynomial (AS) is also obtained by ortho­
gonalization of polynomials with respect to the weight 
function13 : 

p(t)= t(m-n)f2(1_ t) (m+n)/2 (A13) 

in the interval O~ t~ 1. It thus follows that Zlmn func­
tions satisfy the orthogonal relation 

ill ZlmnWZl'mnWd~=~ll" (Al4) 

lIR. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1953). 

14 H. Margenau and G. M. Murphy, Ref. 8 (a) p. 213, (b) Chap. 
15. 

15 I. N. Sneddon, Special Functions of Mathematical Physics and 
Chemistry (Oliver and Boyd, Edinburgh, 1956). 
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By putting n=O in (A3), (AS), and (AS) we find 
that for m;?:O 

(A1S) 

where Plm(~) is the normalized associated Legendre 
function. If we consider (A1S) as the definition of 
Pima) even for negative values of m, then because of 
(A12) we have 

(A16) 

Note that (A16) indicates a deviation from the frequent 
convention adopted in other works in which pr(~) 
for negative m is defined to be equal to Pllml (~). 

JOURNAL OF APPLIED PHYSICS 

The function Zimn arises in the Schrodinger wave 
function of a symmetric rotatorl 6-18 and in the matrix 
representa tion of the rotation groups.l0.14b Further details 
on the properties of the function are found in the litera­
ture pertaining to these subjects. 
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Dielectric Properties of Cobalt Oxide, Nickel Oxide, and Their Mixed Crystals* 
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Dielectric constant K', loss K", and conductivity <T of single crystals of CoO, NiO, and mixed crystals of 
CoO-NiO as a function of frequency from 102 to 1010 cps and temperature from -193°C to 400°C have been 
determined. The dielectric constant K' is constant (12.9 at 25°C) in the whole frequency range in CoO. It 
decreases with frequency in NiO and mixed crystals CoO-NiO. In NiO K' reaches a constant value (11.9 at 
25°C) at 105 cps, and in CoO· NiO (12.3 at 25°C) at 1010 cps. The dielectric constants extrapolated to OOK 
are 10.9, 10.0, and 9.1 for CoO, CoO·NiO, and NiO, respectively. In all crystals the dielectric constant in­
creases exponentially with temperature. Using modified Debye equations, two thermal activation energies 
for K' have been obtained: 0.042, 0.027, and 0.018 eV for temperatures below 40°C (frequency-independent 
region); 0.33, 0.20, and 0.16 eV for temperatures above 40°C, for CoO, NiO, and CoO·NiO (frequency­
dependent region). The plot of log <T vs liT gives straight lines for CoO from 400° to 100°C, and NiO from 
400° to 25°C with activation energies 0.73 and 0.66 eV. At lower temperatures the activation energies de­
crease continuously. The mixed crystals have two activation energies, one at high temperatures and the 
other at low temperatures. Variation of the activation energy with composition at high temperatures is less 
than that at low temperatures. The variation of activation energies in mixed crystals is correlated to lattice 
distortion and an increase of trivalent ion concentration. 

INTRODUCTION 

ELECTRICAL conduction in transition metal oxides 
(particularly Li-doped NiO) and their mixed 

systems has been studied extensively,l-4 With its in­
completely filled 3d shell, pure NiO should be a good 
conductor, according to the simple energy-band theory, 
but experimentally it was found to be an insulator with 
a room-temperature conductivity 0' of the order of 
10-14 (Q-cm)-I. Verwey and DeBoer5 and Mott6 

* The research reported in this paper was sponsored by the 
Air Force Cambridge Research Laboratories, U. S. Office of 
Aerospace Research, under Contract No. AF. 19(628)-395. 

1 F. J. Morin, Phys. Rev. 93, 1190 and 1199 (1954); Bell System 
Tech. J. 37, 1047 (1958). 

2 R. R. Heikes and W. D. Johnston, J. Chern. Phys. 26, 582 
(1957). 

3 S. Van Houten, J. Phys. Chern. Solids 17, 7 (1960). 
4 J. Yamashita and T. Kurosawa, J. Phys. Chern. Solids 5, 

34 (1958). 
6 J. H. De Boer and E. J. W. Verwey, Proc. Phys. Soc. lLondon) 

49, extra part 59 (1937). 
6 N. F. Mott, Proc. Phys. Soc. (London) A62, 416 (1949). 

pointed out that the collective-electron treatment used 
by Bloch7 and Wilson8 is not a good approximation 
here. Using the Heider-London approximation, start­
ing from the atomic wave functions, the poor con­
ductivity of NiO can be explained. 

When NiO deviates from stoichiometry, either due 
to a deficiency of Ni or an addition of Li, it becomes a 
semiconductor with 0' varying from 10-7 to 10-1 

(Q-cm)-I. The activation energy H obtained from the 
slope of the log 0' vs liT plot decreases from 0.6 to 
0.1 eV with increase in Li concentration in the range 
from 0.1% to 10%. In both cases (either in non­
stoichiometric or Li-doped NiO) NiH ions are formed 
to preserve electrical neutrality. The simultaneous 
presence of NiH and NiH allows transfer of an electron 
from one ion to another. This process requires a certain 

7 F. Bloch, Elektronentheorie Metalle, Handbuch Metallphysik 
Radiol. 6.1, 226 (1933). 

8 A. H. Wilson, Proc. Roy. Soc. (London) A133, 458 (1931). 
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