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CXXVIII .  A Theoretical Derivation of the Plastic Properti~ of a 
Polycrystalline Face-Centred Metal. 

By J. F. W. BISHOP and R. HILL, 
H. H. Wills Physical Laboratory, University of Bristol ~. 

[Received June 22, 1951.] 

SUMMARY 

In continuation of a previous paper (Bishop and Hill 1951) it is 
conjectured that  the work done in plastically deforming a polyerystal is 
approximately equal to that  which would be done if the grains were free 
to deform equally. In conjunction with the principle of maximum plastic 
work, this enables the yield function of an aggregate to be calculated. This 
is done for an isotropic aggregate of face-centred cubic crystals, following a 
determination of the stresses needed to produce multi-slip. The theoretical 
yield criterion lies between those of Tresca and yon Mises, in good agreement 
with observaton for copper and aluminum. I t  is shown further that  the 
work-hardening of an aggregate would be a function only of the total 
plastic work if the grains hardened equally;  the departure front this 
functional relation is expressed explicitly in terms of the non-uniform 
hardening. 

§ 1. R~susI i  oF PREVIOUS WorK. 

IN a recent paper (Bishop and Hill 1951, henceforward referred to a~ BH) 
some general theorems were proved for an aggregate in which the crystals 
individually deform by slip according to the Schmid law. The theorems 
depend, in essence, on a principle of maxinmm plastic work for a homo- 
geneously deformed single crystal (BH, equation (9)). This principle 
states that if a crystal is caused to deform plastically through an incre- 
ment of strain dell, the work done by the required stress aii is not less than 
that  done by any other stress a* i not violating the yield condition; thus 

(~i~-~*,)  d~;j~>0 . . . . . . . . .  (1) 

The yield condition is that  the component shear-stress in any of the possible 
slip-directions, and over the associated slip-planes, cannot exceed t h e  
corresponding critical shear-stress in the current state of hardening. The 
critical shear-stress may vary from one slip-direction to another, due to 
differential hardening, or may be different in the two opposite senses of the 
same slip-direction, due to a microscopic Bauschinger effect. In a statis- 
tically homogeneous aggregate, in which cohesion between crystals is 
maintained by multi-slip, the same principle was proved for the 
,macroscopic stress S/~ and strain-increment dEij. (BH, equation (16)). 

t Communicated by the Authors. 
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On a Theoretical Derivation of the Plastic Properties 1299 

Frmn this it was shown to follow immediately that, if the yield criterion 
for the aggregate is 

f(Si~)----0 . . . . . . . . .  (2) 

in a certain state of hardening and anisotropy, then the relation between 
the ratios of the components of the stress and strain-increment tensors is 

Of df. (3) dEi~=h O~i~ . . . . . . . .  

The function f is, moreover, concave to the origin when regarded as a 
surface in stress hyperspace, and does not involve the hydrostatic 

component  of Sij. h is a function of the stress and strain-history, con- 
trolling the magnitude of the strain-increment produced by a further 
increment of stress. 

The plastic behaviour of an aggregate is thus completely determined 
by the functions f and h. The present paper is concerned with their 
calculation for an aggregate of face-centred cubic crystals. 

§ 2. THE BASIC THEOREM. 

Since the actual stress distribution aiJ is in equilibrium, it  follows by  
virtual work that  

~(a~j dEij ) dV=S~j dEij, 

where the integral extends over a unit cube of aggregate (see BH, equation 
(14) and succeeding remarks). Let. a*j be a stress which, at each point. 
of the aggregate, would produce the strain dEij in a free crystal having 
the local orientation and hardening. The distribution a*i is, of course, 
not necessarily in equilibrium. Then, by (1), 

$ (a i~--(z ij) dE o ~0,  

the equality holding in general only when the deviatoric parts of aij and 
a*~ are equal. Hence 

Sii dEi~=[~(ai~ dEi~) dV~dEij j 'a* dV . . . . . .  (4) 

On the other hand, by  integrating (1) through a unit cube of aggregate, 
we obtain 

Si~ dEij>~f((7 ~ delj ) dV. 

Assuming that  there can be no statistical correlation between any 
components of a~ and dE,j, 

l(a* d~,j) dV-~j'a*~ dV × [~ (dE~) dV----dE~J'a~ dV, 

provided there is no rupture or relative sliding of the grains. Hence 

S~j dEi j~dEij[a ~ dV . . . . . . . .  (5) 

On combining (4) and (5) we obtain the theorem on which the 
possibility of a calculation of the function f depends : 

St~ dEt~-----dEi~la*j dV . . . . . . . .  (6) 
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1300 J . F . W .  Bishop and R. Hill on a Theoretical Derivation of 

In  words : the actual work done is equal to  the work tha t  would be done 
i f  the grains all underwent  the same (macroscopic) strain. 

I n  particular, when the slip-directions in any  one grain all have the  
same critical shear-stress r (in both senses), we m a y  define an average 
value ¥ for the aggregate, such tha t  

~ =  I~" dV. 

Then, i f  a* would produce a strain dEij in a grain with critical shear stress 
r, O*j=¥a~/r would produce the s a~e  strain in a grain of the  same 
orientation but  with critical shear stress ~. Hence 

assuming tha t  there is no correlation between a*; and  r. Therefore : 

and so, from (6), 
Si~ dEij=dEi~ ~ ~* dV . . . . . . . .  (7) 

We can thus evaluate the work using the average value of the critical 
shear stress in the aggregate. 

But  equations (5) and (6) cannot be str ict ly true since (6) implies tha t  
~he deviatoric part  of a,.,. is equal to tha t  of a*~, all components of  which 
are generally discontinuous across grain boundaries or wherever else the 
lat t ice orientation changes. (It is shown later tha t  a general strain can 
only be produced by some one of a finite set of  stresses.) However, we 
are inclined to th ink ( though we have not  found a rigorous proof) t ha t  
equation (6) is not much  in error, and we assume it as an approximation.  

§ 3. METHOD OF CALCULATION OF THE YIELD FUNCTIO:N. 

The way in which f can be calculated is conveniently visualized geo- 
metrically. A strain increment dE ij can be considered as a free vector 
in stress hyperspace. According to (6) the scalar product  Sit dEll. is 
calculable in terms of the slip properties of a single crystal. The ex t remi ty  
of  the stress vector Si~, corresponding to a strain-increment dEi¢ , is thus  
known to lie on a plane which is perpendicular to dEij and whose distance 
from the origin is 

dEi~a~j dV (8) 
(dE iflE iJ)l ,,~ 

(Although the point, Ia* dV lies on the plane, it  does not, of  course, 
necessarily coincide with Sit. ) Now according to (3), the normal to the  
yield surface at the point  Si, is parallel to dEij , and se perpendicular to  
the  plane. The plane is therefore tangent ial  to the yield surface at  
S,.j. The surface is thereby  found as the.envelope of planes whose distances 
from the origin are given by (8). Since possible strains have zero hydro- 
static part  (being the result of simultaneous simple shears), the surface 
is cylindrical with generators parallel to the direction 3~. 
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the Plastic Properties of a Polycrystalline Face-Centred Metal 1301 

When the aggregate as a whole is isotropic the principal axes of the stress 
.and strain-increment tensors are coincident, and we only need to consider 
the relation between their principal values represented in three dimensional 
space. The aggregate will be statistically isotropic when the orientations 
of grains in the same state of hardening are randomly distributed ; this 
condition must be satisfied for each of the various states of hardening at 
a n y  moment in the differentially-hardened aggregate (if not, the aggregate 
might be anisotropic despite the absence of a preferred orientation). 

The numerical calculations in the present paper are restricted to such 
an isotropic aggregate in which, moreover, the slip-directions in any 
grain are equally hardened (so that  equation (7) is applicable). The 
development of deformation textures and their effect on the yield surface 
is left to a later paper. 

§ 4.  M U L T I - S L I P  LN ~ A F A C E - ( _ ' E N T R E D  C U B I C  C R Y S T A L .  

At ordinary temperatures and rates of strain, glide occurs in a face- 
.centred cubic crystal on the octahedral planes in the directions of the 
oetahedron edges. Each of the four distinct glide-planes contains three 
possible slip-directions, making twelve in all, each of which has two 
opposite senses. The positive senses of the slip-directions are arbitrarily 
Chosen here according to the following Table ; letters a, b, c, d refer to 
the four glide-planes, and with suffixes 1, 2, or 3, denote incremental 
shears in the respective positive senses. The components, referred to the 

Plane (1 l 1) (ii1) (il 1) (1il) 

S h e a r  a 1 a 2 a 3 b I b 2 b s c 1 c 2 c s d 1 d.~ d a 

Direction 011 10l llO 0 i i  101 i10 01]- 101 i i0  011 101 110 

Cubic axes, of the strain tensor dEi~ due to simultaneous shears in the 
£welve directions are given by the equations (Taylor 1938 a) 

%/6 dEn-:--a2+aa--bz~ba--% ~-ca--d2+d3, 

%/6 d%~= al--aa~-bl--ba+ci--ca+dl--da, 

~,/ 6 dEaa-:--al +a2--bl + b2--cl ~-c2--dl ~-d~, 
(9) 

2%/6 d%a= a2--aa--b2+ba+c2--ca--d2-~da, 

2%/6 deal-:----al~aa~-bl--ba-~-cl--ca--dl-~-da, 

2%/6 dei2= al--a2--~bl--b2--c1~-%--dj-~-d~. 
Any possible strain has five independent components (the hydrostatic 
part  being zero), and therefore in general can only be produced by multi- 
slip over a group of directions containing an independent set of five. 

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
9:

39
 2

2 
Fe

br
ua

ry
 2

01
4 



1302 J . F . W .  Bishop and R. Hill on a Theoretical Derivation of 

Of the 12C5=792 sets of five shears, only 384 are independent. The 
remaining 408 include dependent combinations of type 

al~a~-a3-----O (144), 

a~ +b2~-d3=O (228), 

al--bl+cl--dl----O (36), 

or their equivalents ; these equations are to be interpreted as meaning 
tha t  such combinations of unit  shears produce zero resultant strain. Of  
the 384 independent sets of five shears, 216 have two shears on each of- 
two planes, and 168 have two shears on one plane only (the latter were 
apparently thought by Taylor to be dependent sets). 

I f  the components of a stress applied to the crystal are ai~ referred t o  
the cubic axes, the shear stress components, multiplied by V'6, are equal 
to 

A--G~-H (%), B~-F - -H  (a2) ,  C - - F + G  (a~), 

where 

A + G + H  (b~), 

A ~ - G - - H  (Cl) , 

A - - G - - H  (dl), 

B - - F - - H  (b~), 

B-~-F~-H (c.,), 

B--F-~-H (d2), 

C-t-F--G (ba), 

C--F- -G (c3), 

C-~-F-~-G (da), 

(10), 

A---~a22--~33 , B-----~33--~11 , C ~ 0- 11 - - 0 - 22  , 

F~-(~23 , G----%I , H : ( ~ 1 2 .  

I t  will be observed that  the 12×6 matrix of coefficients in the  
relations (10) between the 12 shear stress components and the 6 applied 
stress components is just the transpose of the 6 × 12 matrix of coefficients 
in (9). This is a simple consequence of the virtual work equation 
(7i~ deii:X~- dy, and does not depend on any particular lattice geometry. 
I t  follows that  we can always find a stress for which the component 
shear stresses attain the critical values in prescribed senses in a given set 
of five independent slip-directions (the respective minors being identical 
and non-zero). The critical value would usually be exceeded in one or 
more of the other seven directions, but, for any given strain, it is always 
possible to find at least one of the independent sets for which there 
exists a physically possible stress to operate the constituent shears. 
However, in evaluating the expression (8) there is no need to determine 
a physically possible combination of shears which are equivalent to the 
strain. It is necessary merely to calculate the works done in the given 
strain by stresses not violating the yield condition, and to select from 
these works the greatest. In fact it is only necessary to make the choice 
from the works done by 56 particular stresses, which correspond to the 
'" vertices " of the polyhedral surface in stress space representing the 
yield criterion for the crystal. Proofs of these statements are left to a~ 
subsequent paper. 
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the Plastic Properties of a PolycrystaUine Face-Centred Metal 1303 

The 56 stresses m a y  be classified in five groups, in which the typical  
values of (A, B, C, F, G, H)/x/6r are as follows when the critical shear  
stress r is the same in all the slip-directions : 

(i.) (1. - - l ,  0, 0, 0, 0). Tension or compression of amount  ~ /6r  along 
a cubic axis. 

{ii.) (0, 0, 0, 1, 0, 0). A pure shear of amount  V'6r in a cubic plane 
and parallel to a cubic axis. 

(iii.) (½, ½, --1,  0, 0, ±½). A pure" shear of amount  x/3r in a cubic 
plane and at 22½ ° to the cubic axes. 

(iv.) (½, --.~,1 0, =E½, =[=½, 0). Principal stresses =k~/6r(1, --½, 0) wi th  
the second normal  to an octahedral  plane and the thi rd  along a slip- 
direction in t ha t  plane. 

(v.) {0, 0, 0, 1 ±½, 4-½). Tension or compression of amoun t  a~/6r 
normal to an octahedral  plane. 

The 56 stresses have 6 members in each of (i.) and (ii.), 12 in (iii.), 
24 in (iv.), and  8 in (v.). The critical shear-stress is a t ta ined in 8 slip- 
directions for (i.), (ii.), and (iii.), and  in 6 slip-directions for (iv.) and (v.). 

§ 5. THE NU3IERICAL METItOD. 

For a calcu]ation of the yield function of an isotropic aggregate in which 
there is no Bauschinger effect, it  is only necessary to consider macroscopic 
strains dE;j whose principal values are (1, --/~, h - - l ) d E  where ½~<h~<l 
(Hill 1950, p. 17 et seq.). The work done in such a strain of a free crystal  
has to be computed for each orientat ion of the strain axes to the cubic 
axes. I f  {O, ¢, ¢) are the Eulerian angles of the strain axes wi th  respect 
to the cubic axes, alr essentially distinct orientations occur once only in 
the intervals 

0~<¢~r /4 ,  0 ~ c o t  0<~sin ¢, 0~<¢~7r, 

in view of the latt ice symmet ry  and the assumption of equally hardened 
slip-directions. In  other words, i t  is sufficient to restrict the major  strain 
axis to one of the 48 identical spherical triangles in the stereographic 
projection, and allow the other axes to rotate  through half  a revolution. 
I f  dW is the work done on uni t  volume of crystal in a strain defined b y  
given values of A, 00 ¢ and ~b (¥ being the  average critical shear stress). 
then, from (7), 

Si~. dE/j(~)=SS S dW sin 0 dO de d~b/SS~ sin 0 dO de de. 

In  the  computat ion,  net  points were taken at  5 ° intervals of 0 and ¢, 
and 18: intervals in ¢. Five values of )~ were taken in steps of i between 
½ and 1. I t  was found convenient to express dW in terms of the principal 
values of the  56 stresses and the angles between ' the stress and strain 
axes. The angles were read from a stereographic net  on which were 
1harked the axes of the 56 stresses. 
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1304 J . F . W .  Bishop and R. Hill on a Theoretical Derivation of 

I f  p denotes the perpendicular (8) from the origin to a tangent plane 
-of the yield surface in principal stress space, the results of the calculations 
a r e  

1 ~ 3 7 1 

~/(~)p/¥ 3.06 3.04 2.98 2.91 2-86 

The error involved in the integration is estimated to be not more than 
one unit in the second decimal place. 

§ 6. DlscussIo~- OF RESULTS. 

Fig. 1 shows a typical 60 ° sector of the cross-section of the yield surface. 
obtained from the values of p as described in § 3. The calculated curve 
cuts orthogonaUy the radii corresponding to pure shear and to pure 
tension, and lies between the Tresca hexagon and the von Mises circle 
when all are made to coincide for tension. In particular, the ratio of the 
yield stress in shear to that  in tension is 2.86/(~/3×3.06)--~0.540, 
compared with 0.500 and 0.577 for the Tresca and Mises criteria. 

The experimental data of Taylor and Quinney (1931) for copper and 
atuminium are also shown in the figure, and tend to lie between the 
Mises circle and the theoretical curve. The small discrepancy may be 
due to defects in the theory such as the approximation involved in 
equation (6), unequal hardening of slip-directions in individual crystals, or 
microscopic modes of distortion other than slip in the 12 directions. On 
the other hand, the experimental data may not be completely reliable, 
due to anisotropy or to a slight uncertainty in the extrapolation used to 
circumvent the hysteresis loop. 

Also shown in the figure are the plastic potential curves computed 
from Taylor and Quinney's measured relation between the directions of 
the stress and strain-increment vectors; Taylor's (1947) calculations for 
¢opper have been corrected in some instances. The agreement of the 
plastic potential curves with the directly measured yield loci suggests the 
~ubstantial validity of (3), the theoretical derivation of which does not 
involve the further assumptions made in the present computation of the 
actual form off .  

The comparison can also be made in terms of Lode's diagram, but in 
our  opinion, this over-magnifies small variations in the stress-strain 
relations, and is responsible for frequent statements that  the Ldvy-Mises 
equations are merely a moderate approximation. Thus, to the uncritical 
eye, a typical observed pair of Lode variables (0.5, 0.4), compared with 
the L~vy-Mises prediction (0.5, 0-5) might suggest an error of 20 per cent. 
However, it can be seen from the figure tha t  the maximum difference 
in direction between the normals to the Mises circle and the measured 
plastic potential curves for copper and aluminium is only about 4°: 
without any theory at all the strain-increment vector could be anywhere 
in the 360 ° range. 
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the Plastic Properties of a Polycrystalline Face-Centred Metal 

Fig. 1. 
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~r Measured yield locus for AI 
Pleasur~d yield locus for Cu 

§ 7. INFLUENCE OF R E S I DU A L  STRESSES. 

When the external loads are removed from a plastically-deformed 
aggregate, a residual distribution of internal stress remains. According 
te 'the maximum work principle for the aggregate (BH, equation (16)), 

SER. 7, VOL. 42, NO. 334.--~OV. 1941 4 T 
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1306 J . F . W .  Bishop and g .  Hill on a Theoretical Derivation of 

the yield function for the aggregate does not depend in any way on these 
internal stresses, but  only upon the intrinsic hardening of the grains (as 
specified by the current values of the critical shear stresses in the slip 
directions). This conclusion is directly due to the neglect of elasticity in 
the present theory. In  effect, the theory assumes that  the elastic moduli 
are indefinitely large, so that  a single crystal remains rigid under 
increasing load until it yields plastically. Similarly, an aggregate remains 
rigid until all grains are stressed to their individual yield points, and there 
is therefore no hysteresis loop. During loading, the weakest grain becomes 
plastically stressed under a load which may be termed the elastic limit 
of the aggregate. The elastic limit is generally appreciably lower than the 
yield-point load of the aggregate and clearly depends directly on the 
residual stresses. With increasing load other grains in turn are plastically 
stressed, but are prevented from deforming (or hardening) by the remaining 
non-plastic, and therefore rigid, grains. Hence, apart from the restricted 
possibilities of a stress adjustment within the individuM yield surfaces 
of such plastically stressed grains, the greater part of further increments of 
load is borne by the non-plastic grains. 

In  an actual aggregate, elasticity permits plastic distortion and 
hardening of the weakest grains as soon as the elastic limit is reached. 
The immediate consequence is a hysteresis loop, greatly dependent on 
residual stresses (and correspondingly removable by a mild annealing), 
and with a breadth equivalent to a strain of elastic magnitude. When 
the hardening during the loop is small, it is naturally to be expected (in 
accord with observation) that  the reloading branch of the loop will bend 
over fairly sharply to rejoin, virtually, the continuation of the previous 
stress-strain curve. Moreover, the loeM ordinate of the curve should be 
effectively identical with the yield-point stress calculated for a plastic- 
rigid aggregate. Many parallels might be instanced in stress analyses of 
structural parts on the basis of the macroscopic theory for a plastic-elastic 
homogeneous solid. 

Similar considerations apply to the hysteresis loop during reverse 
loading, and to the tendency of the residual stresses to act so as to lower 
the elastic limit (Bauschinger effect). However, a further distinction 
must be made here. When the sign of dEi~. is reverged, the vMue of S;~ 
calculated from equation (6) would not be merely reversed when there is 
a microscopic Bauschinger effect ; that  is, when the critical shear stress 
on a slip-plane depends on the sense of slip. Thus, even for the plastic- 
rigid model, one would expect in such circumstances a macroscopic 
Bauschinger effect on the yield-point. 

§ 8. WORK HARDENING OF AN AGGREGATE. 

The calculated value of the tensile yield stress is 3.067. This agrees 
closely with the value obtained by Taylor (1938 b), who assumed that  
an aggregate actually deforms uniformly (whereas we have conjectured that  
the work done is as i f  it did). Taylor was able to determine the yield 
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the Plastic Properties era Polycrystalline Face-Centred Metal 1307 

stress directly from the work done in a pure extension since, for an 
isotropic aggregate, it follows from symmetry alone that  the stress is 
uniaxial. In general, of course, it is also necessary to know the relations 
between the directions of the stress and strain-increment vectors. 

Taylor computed the work from the minimum shear principle. As we 
have proved (BH, equation (11)), this leads to the same result as the 
maximum work principle, but  the latter is much more convenient. 
Taylor's values for the works done in the individual orientations agree 
closely with ours (even though he selected the shears from only 216 of the  
384 independent sets). 

As Taylor showed, the formula S=mr(mE)  for the tensile stress-strairt 
curve of an aggregate, where r(7) is the shear-hardening curve for a 
crystal, is in fairly good agreement with observation (when m=3.06,  in 
the case of aluminium). I t  is assumed in the derivation that  the virtual 
work equation S d E = e  d~ can be written for an aggregate, where the 
averaged quantities • and y actually correspond on the shear-hardening 
curve. 

In general, however, 

dW----S;~ dE,j=SrZ I dy[ dV and d~-=S(dr) dV-~fr(r)Z I dr l dV 

if hardening in multi-slip is a function only of the sum of the shears. 
Here r(¢) denotes the rate of hardening dr/dy. Assuming that  there is 
no correlation between r and 2: ] d~, I, 

d W = ~ Z [  dy I dV and dr----r(r)SEI dy[ dV. 
Hence 

dW=~ dT-/r(r). . . . . . . . .  (11) 

I f  all grains are equally hardened, r(~-)=r(~-) and dW----~ d~.  r and 
the hardening of the aggregate (i. e. the scale of the yield surface) are 
then functions only of the total plastic work. The unequal hardening of  

the grains in such a way that  r ( r ) t r ( ~ )  is presumably responsible for the  
observed departures from this functional relation and from the formula 
S=mT(raE). 
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