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XLVI. A Theory of the Plastic Distortion of a Polycrystalline Aggregate 
under Combined Stresses. 

By J.  F. W. BmHoP and R. HILL, 
Wills Physical Laboratory, University of Bristol.* 

[Received February 8, 1951.] 

SUMMARY. 

A general relationship between stress and plastic strain in a 
polycrystalline aggregate is derived for any metal in which individual 
crystals deform by  slipping over preferred planes under a critical shear 
stress. Full account is taken of the non-uniform distortion due to mutual  
constraints between the grains of an aggregate. I t  is shown that  a 
plastic potential exists which is identical with the yield function. Upper  
and lower bounds are obtained for an approximate calculation of this 
function for any applied system of combined stresses. 

§ 1. INTRODUCTION. 

THE macroscopic theory of plastic deformation in a polycrystalline metal 
is based on observations of the behaviour of the metal in bulk. I t  rests 
also on the simplifying hypothesis that  the material is locally 
homogeneous (though not necessarily isotropic). The theory so 
constructed is found to be adequate as a first approximation when 
applied to many problems in engineering science and metal technology. 
There remains, however, the task of relating the macroscopic observations 
to ones more fundamental, for example, the mechanisms by  which a 
single crystal deforms under load. Such an investigation might hope to 
attain two main objectives: first, to show which of the several 
microscopic modes of distortion are chiefly responsible for the behaviour 
of the aggregate as a whole ; and second, to indicate, more precisely than 
experiment at present can, what refinements should be added to the 
macroscopic theory and what these might be for any particular metal. 
Several previous writers have dealt with related problems, and the most 
important papers will be discussed briefly. 

In single crystals of many metals it is known that  the main mechanism 
of plastic distortion on a microscopic (though not atomic) scale is simple 
shear parallel to preferred planes and directions. At ordinary temperatures 
both the planes and directions are generally those of closest atomic 
packing. I t  is observed that  pronounced slip (or glide) is initiated along 
the particular plane and direction for which the corresponding component 
of shearing stress first reaches a eertain critical value under increasing 
external load. This critical value depends on the temperature and rate 

* Communicated by the Authors. 
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Distortion of a Polycrystalline Aggregate under Combined Stresses 415 

of straining, but not on the crystal orientation or the type of load 
(provided the loading-path is not such as to induce hysteresis effects). 
This has been established for metals such as copper, aluminium, nickel, 
magnesium, zinc and cadmium by the experiments of Mark, Polanyi 
and Schmid (1922), Taylor and Elam (1923), Polanyi and Schmid (1923) 
and Schmid (1924), among others. Double slipping is observed ff the 
critical shear stress is re~ched simultaneously on two of the possible 
planes and directions. 

The problem of predicting the tensile yield stress of a polycrystalline 
face-centred cubic metal was considered by Sachs (1928) and by Cox and 
Sopwith (1937) on the assumptions that  (i) each grain is subjected to a 
uniaxial stress parallel to the specimen axis sufficient to initiate slipping 
in the most highly stressed direction; (ii) all orientations .~re equally 
likely; (iii) each grain is in the same state of work hardening. The 
resultant axial load on the specimen was calculated as the sum of the 
individual loads in the constituent grains. The value obtained for the 
macroscopic uniaxial yield stress was 2-27 (approximately), where ~ is 
the shear yield stress of a single crystal. This treatment is open to the 
objections tha t  the grains could not form a coherent whole if only a single 
homogeneous glide occurred in each, and tha t  the necessary conditions 
of equilibrium could not be satisfied across grain boundaries if the stress 
in each were a simple tension of varying amount. 

Koehend6rfer (194]) added the further hypothesis that  the grains 
extend by the same amounts in the direction of the specimen axis. This 
enabled him to calculate the stress-strain curve of the aggregate. For in 
each grain 

a/-r-~dT/de=m 

where a is the axial stress in a grain, de is the common axial strain- 
increment, d 7 is the increment of shear strain in the slip direction, and 
m is a dimensionless factor depending only on orientation. (In passing, 
it may be noted that  the virtual work equation ade=rd 7 is naturally 
satisfied). We now interpret the various symbols as mean values over 
all orientations, so that  m--~2.2 from Sachs' calculations. I t  follows tha t  
the stress-strain curve of the aggregate is 

-=m~(r)=m~(m~) 
where z(7 ) is the shear-hardening curve (the transition from dT~mde 
to 7 ~ m e  is legitimate since m is independent of the amount of strain 
on the assumption of continuing isotropy). However, the best fit of 
this a(e) relation to Taylor's experimental curve for aluminium gives a 
value of about 3-1 for m. 

In a recent paper (1950) Calnan and Clews considered the particular 
directions in which a pure tension would need to be applied to operate 
simultaneously either 4, 6, or 8 shears in a face-centred cubic lattice. 
They assumed the stress state in each grain to be a uniaxial tension of  
this kind and of the requisite amount. Each grain is assumed to undergo 
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416 J . F . W .  Bishop and R. Hill on a Theory of the Plastic 

the specimen extension (and not the strain as a whole). Thus, the 
objections raised against previous work with regard to the independent 
action of the grains apply here, also. Despite this Calnan and Clews' 
computations led to a stress-strain curve in fair agreement with that  
measured for polyerystalline aluminium. 

A more realistic calculation of the tensile yield stress of a face-centred 
cubic aggregate is due to Taylor (1938), who assumed that  each grain 
undergoes the same uniform strain (so maintaining cohesion). This 
requires, in general, the operation of at least 5 independent shears out  of 
the 12 operable at ordinary temperatures. Hence, if only geometry is 
considered, many choices are possible for a given strain. Taylor 
introduced the hypothesis that  the actual active set of shears is that  for 
which the sum of their separate magnitudes is least. The hypothesis 
has no obvious a priori justification, but  Taylor based it on observations 
of single crystals under uniaxial stress and on a postulated analogy with 
the dynamics of a non-conservative mechanical system. By adding the 
further assumption that  the shear hardening of a crystal during 
simultaneous glide depends only on the sum of the absolute shears, 
Taylor was able to compute a stress-strain curve for an aluminium 
aggregate in fairly close agreement with the measured curve. There 
are two main criticisms of this approach:  first, it is not proved that  
a combined stress could always be found to operate any geometrically 
possible set of shears (without exceeding the critical shear stress 
in non-active directions); and, second, no account is taken of 
stress-continuity conditions across grain boundaries. 

All these previous investigations have been confined to an aggregate 
under simple tension or compression. In the present paper no such 
restriction is placed on the applied load. 

§ 2. THE MACROSCOPIC THEORY OF PLASTICITY. 

In order to appreciate the aim of the present work it is necessary to 
be familiar with the premises of the macroscopic theory of plasticity. 
These will be summarized here; a full discussion has been given by  
Hill (1950). 

The theory assumes a locally homogeneous material (possibly 
anisotropic) having a sharp yield point after work-hardening. The 
yield criterion for a metal in a given state of hardening is assumed not 
to depend on the hydrostatic component a of the applied stress ~ii, and 
is usually taken to have the form 

f(a~j)----c ; a~j=(ril--a$ii . . . . . . . .  (1) 

This equation may be regarded as defining a surface in stress hyperspace ; 
the surface is " cylindrical ", with generators parallel to the direction $ij. 
_An assumption adequate for many applications, though not necessary in 
principle, is that  the function f does not involve parameters depending 
on the previous strain-history. The dependence of the shape and size 
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of the yield surface on strain-history is thus taken to be expressible 
through the single parameter c. Infinitesimal changes of stress for 
which d f : O  maintain the element on the point of yielding, and cause 
only elastic changes of strain in a hardening material. The sign of f is 
conventionally chosen so that  df~O for an increment of stress producing 
further plastic strain, while if df~O the element unloads elastically. 

The elastic part of the strain is neglected henceforward. The relations 
between stress and strain are taken to be 

dais df ; df~O . . . . . . . .  (2) 

g (the plastic potential) and h are scalar functions of the reduced stress ~.j ; 
parameters in g depending on strain-history are held constant in the  
differentiation. When the element is isotropie f, g and h must be functions 
only of the two independent invariants of the tensor a~. Since g does 
not involve the hydrostatic part of the stress, (2) implies that  there is no 
plastic volume change. 

I t  is normally assumed, in the absence of definite experimental evidence, 
that  the yield function f and the plastic potential g are the same*. With  
this simplification equation (2) becomes 

deij=h~fa~.df; d f~O . . . . . . . .  (3) 

Ce;tain extremum principles (and an associated uniqueness theorem) may  
then be proved (Hill 1950). The proof of one of them will be repeated 
here for the sake of a later analogy. 

(i) Maximum Work Principle. 
Equation (2) may be interpreted as asserting that  the strain increment 

(represented in stress hyperspace) is parallel to the corresponding outward 
normal to the yield surface. In order that  a unique state of reduced 
plastic stress should correspond to a prescribed increment of strain it is 
evidently necessary for this surface to enclose, and be concave at all 
points to, the origin. 

There will be two generators on the surface where the normals are 
parallel to a given direction; uniqueness is secured by  the condition 
that  the plastic work is positive. 

Suppose, now, that  an element is in a given state of hardening, defined 
by a certain yield-surface. Consider a plastic stress state ~'i and 
corresponding straindncrement deij. I f  a~ is a stress state lying within 
or upon the yield surface, the vector ~i~--a~ is inclined at  an acute angle 
to the outward normal at  ~ii (the yield surface being cylindrical and 
concave to the origin). Hence (using the summation convention) 

(a,.~-- a~)d%.~>O, d%.i # 0  . . . . . . .  (4) 

* More generally, g is taken equal to any convenient multiple or power of f. 
The resulting stress-strain relations are always the same if h is suitably altered. 
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418 J . F . W .  Bishop and R. Hill on a Theory of the Plastic 

the equality holding only when aii and a~ differ by  a hydrostatic 
component. This has the interpretation that  the work done by  the 
actual stress in a prescribed strain-increment is greater than that  done 
by  any other stress not violating the yield condition. The result does 
not involve any assumption about  the dependence of the yield surface 
on the strain-history. 

Consider, next, a finite mass undergoing plastic deformation at 
all points. Let ais be the actual stress, satisfying the yield condition and 
the equilibrium equations 

~°:J = 0  . . . . . . . . . .  (5) 
axj 

at  all points. The associated strain-increment must be derived from a 
continuous displacement increment dui, such that  

I f  a~ is any stress state satisfying (5) and lying within or on the yield 
surface for each point of the mass, we have the virtual work equation 

;{(ai~--~5)d, ij } dV = l((gi--F*)dui} dS, 

where the first integral is taken through the volume, and the second 
over the surface of the mass, F i and F* being the ith components of the 
respective outward forces acting on unit surface area. Hence, from (4) 

;{(Fi--F*)dui}dS~O . . . . . . . .  (6) 

the equality holding only when the stress states differ by a uniform 
hydrostatic stress. Equation (6) is t rue  whether or not the states of 
hardening and anisotropy are non-uniform, and no assumptinn is made 
as to how they depend on strain-history. 

(ii) Converse of Maximum Wor]c Principle. 
Suppose it to be given that, for any prescribed strain-increment, the 

corresponding state of plastic stress in an element is such that the work 
done is utationary with respect to infinitesimally near stress states, lying 
on the yield surface. Then it is evident that  the normal to the yield 
surface at the corresponding point must be parallel to the strain-increment 
vector. A plastic potential therefore exists and it is identical with the 
yield function. The latter, moreover, must be cylindrical with generators 
parallel to the direction ~.:, since any possible strain-increment has zero 
hydrostatic part (there being no plastic clmnge of volume). I f  the work 
done is an absolute maximum, with respect to all stress states within or 
on the yield surface, the surface must be concave to the origin at every 
point. 

This is the basis of the method adopted later to derive equation (3) 
from the properties of single crystals. 
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Distortion of a Polycrystalline Aggregate under Combined Stresses 4] 9 

(iii) Complementary Minimum Principle. 
Consider a mass in an equilibrium plastic state (ai~. , dEii) and let dE~ 

be any strain-increment; de o. and dE*j are derived from continuous 
displacement increments du i and du* taking the same values on the 
surface and having zero divergence everywhere. I t  may be proved 
(Hill, olo. cir., p. 67) that  

I(]  a~j[[d~ill) d V < l [  (a~j[[de*j[)dV . . . . . .  (7) 

where I%I:  V(%%}, etc., 

provided the material is isotropie and the plastic potential is a circular 
cylinder in principal-stress space ; i.e. f :a~j  a~j in (3). I f  the state of 
hardening is uniform, (7) reduces to Marker 's  result 

* ° • • • . • • Ild ;jl dV-  IId  jl dV. (s) 

The analogue of (7) for any plastic potential is 

I de;j) dV= I (-:j dV< I dV, 

where (4) is used to derive the inequality, a~ being the plastic stress-state 
corresponding to deij. 

§ 3. PLASTICITY OF A SINGLE CRYSTAL. 

We assume that the only mechanism of plastic distortion in a single 
crystal is by  glide parallel to preferred planes and directions, and we 
examine the consequences of such an assumption. Let there be n possible 
slip directions a 1 . . . .  a,~. (on associated glide planes), for a certain crystal 
lattice. The displacement of any point of the crystal, due to 
simultaneous infinitesimal shears d~l . . . .  d~n (positive or negative), 
in the respective directions may be found by simple geometry. The 
corresponding tensor representing the homogeneous strain has five 
independent components (its hydrostatic part  being necessarily zero}, 
e~eh of which is found as a certain linear combination of d~j . . . .  d ~ .  
For given d~k ( k : l  . . . . .  n) the strain tensor is thereby uniquely 
determined. 

On the other hand, when the components of the strain tensor are 
given (the hydrostatic part being zero), we have n unknown d~k and 
5 equations between them. I f  n is less than 5 (as in a hexagonal metal) 
a combination of shears cannot be found to produce an arbitrary strain, 
I f  n is equal to 5 there is a unique set of the dtk if the determinant of 
the coefficients is non-zero. I f  n exceeds 5, a set of 5 slip directions can 
be selected in any one of nC s ways, but  the corresponding set of shears 
can only be found when the associated determinant is non-zero, 
i.e. when the slip directions form an independent set. I t  may also be 
possible to find combinations of 6 or more shears to produce the 
prescribed strain. 
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420 J . F . W .  Bishop and R. Hill on a Theory of the Plastic 

In a fully annealed crystal the critical shear stress appears not to 
depend on which slip-direction is activated, nor on the sense of the shear. 
During continued deformation active and non-active directions harden 
equally, to a first approximation (Taylor and Elam 1925). Small differences 
are observed, however; for example, double slipping does not always 
begin at the stress which would be expected if the previously non-active 
direction hardened at  the same rate as the active one. Differences 
between the critical shear stresses may also be due to microscopic internal 
stresses set up during cold-working. These stresses can be expected to 
favour slip in certain directions and senses, and they will therefore be 
effective whenever the load is varied in orientation or sense. At present 
there is no clear evidence as to the importance of such effects in crystals 
of pure metals, but a Bauschinger effect has been observed in cold-worked 
brass, from which it could be largely removed by a mild annealing not 
reducing the average hardening (Sachs and Shoji 1927). 

In the subsequent analysis we allow for these possibilities by 
associating two critical shear stresses with each of the preferred 
directions : T k for slip in the sense a k, and T~ for slip in the sense --ak.  
I t  is assumed that  the hydrostatic part of the applied stress is without 
influence on these critical values ; this has been found true in many pure 
metals (as distinct from alloys) provided the hydrostatic stress is not more 
than a few times the shear yield stress (e. g. Polanyi and Schmid 1923, 
Taylor 1927). 

(i) M a x i m u m  Work Principle for a Single Crystal. 

Let dEij be a prescribed increment of strain in a single crystal, and 
let ai~ be a stress (not necessarily unique) which will produce this strain. 
Let gig be any other stress which does not violate the yield conditions. 
Then 

d W - - d W  = ( O ' i j - - O ' i j )  de i j :  Z(  ~'-- ~'*) d~, 

where the summation is over all shears of a set equivalent to deii and 
activated by aij. We take each dy to be the shear (positive or negative) 
in the sense a of the corresponding slip-direction, so that  z and r* are 
then the shear stresses in the same sense. Then, when d y > 0  in the kth 
direction, 

T--T*=Tk--T*~0 

and when dy <0  in the kth direction, 
i , T--T*:--TI~--T 40 

since, by hypothesis -- T~. ~< ¢* ~¢~.. 

All products (¢--¢*)d? are therefore positive or zero, and so 

(a,j--ai~)deij~O . . . . . . . . .  (9) 

The equality holds only when ~ and T* are equal in all active directions, 
and, if there are at least 5 of these, a;~. and a~ will generally differ only 
by a hydrostatic stress. Particular strains may be obtainable by applying 
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Distortion of a Polycrystalline Aggregate under Combined Stresses 421 

any one of a number of stresses (not differing merely by a hydrostatic 
component), but these stresses all do the same work. For if a~ is also a 
physically possible stress, 

( ~ - ~ j )  d~:j~> 0, 

in addition to (9), and therefore ai*jdEij=a,j deil. 
It. is also to be remarked that  many sets of shears (even associated 

with the same stress) may produce, in certain cases, the same strain. 
That is, more than one set of shears may be physically, as well as 
geometrically, possible. However, since there are only 5 disposable 
stress components it is clear tha t  only for certain sets of 5 slip-directions 
is it possible to find a stress to activate them in prescribed senses, since 
the critical shear stress must also not be exceeded in the non-active 
directions. 

(ii) Minimum Shear Principle for a Single Crystal. 
Let dE,.~ be a prescribed increment of strain and let a,j. be a stress which 

will produce this strain by activating a set of shears dT. Let dT* be any 
set of shears  which are geometrically equivalent to the prescribed 
strain, but w.hich are not necessarily operable by any stress satisfying 
the yield conditions. The virtual work equation can be written in 
two ways : 

a ii de il = Z r  d y = Z r  dT*. 

I f  rk=-r ~. for each direction (no Bausehinger effect), 

Z r d ~ : Z r k [ d ~ [ ,  and Z . rdT*<Zrk[dr*  [. 

Hence 2:~-k I d~ I ~< 2:~-k I d~* I . . . . . . .  (lo) 

In particular, when all directions are equally hardened, 

z l @ l ~ < z ' l @ *  I . . . . . . . .  (11) 

This states that  the sum of the absolute values of a physically possible 
set of shears producing a given strain is less than that  for a set which is 
only geometrically possible. I f  more than one set is physically possible 
the sums of their absolute values are equal. 

We have thereby proved the hypothesis (1 l) suggested by Taylor (1938), 
and extended it (10) to the case when the hardening is unequal. 

§ 4. POLYCRYSTALLINE AGGREGATE. 

The experimental laws of plastic deformation in an aggregate (as a 
whole) express relations between macroscopic measures of stress and 
strain. An ideal experiment is designed so that  the measuring device 
gives an average value of stress or strain over a large number of crystal 
grains. In the interpretation of such measurements the following two 
assumptions are involved. 
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422 J . F . W .  Bishop and g .  Hill on a Theory  o f  the Plast ic  

(a) The measuring device extends over a volume of such size that  the 
distribution of orientations and hardnesses of crystals (or perhaps 
fragmented " crystallites ") does not vary significantly from one part  
to another. That  is, the specimen is regarded as homogeneous in the 
macroscopic sense. This does not preclude a macroscopic state of 
anisotropy, since the actual orientations are not necessarily randomly 
distributed over all possible ones. 

I t  is convenient to refer to the smallest cubical volume possessing this 
property as a " u n i t  " cube. 

(b) No correlation exists between microscopic stress and position 
over any plane section of " unit " area. This i§ the necessary and 
sufficient condition for the stress resultant over such a unit section to be 
a single force through the centroid of the section. The Cartesian 
components of the resultant force per unit area are, of course, the 
conventional measures of the corresponding components of macroscopic 
stress. These form a tensor (as a direct consequence of the conditions 
for linear equilibrium) and the tensor is symmetric if the stress resultant 
on a plane is a force, and not a force and irreducible couple. I f  a 
correlation did exist between microscopic stress and position (and this 
appears possible in principle), the macroscopic stress tensor would not 
necessarily be symmetl~c, and the conditions for angular equilibrium 
would take another form. These remarks are equally pertinent, of course, 
to the concept of microscopic stress in a single crystal and its dependence 
on the distribution of interatomic forces. 

The definition of a normal component of an infinitesimal homogeneous 
strain is the increment of distance between two points initially unit 
distance apart in the direction under consideration. The definition 
of a component of shearing strain is based on the total relative tangential 
displacements of two pairs of perpendicular planes at  unit distance 
apart. The analogous definition of the macroscopic strain-increment 
components for ~ " unit cube " of an aggregate is 

d E i i = ½ ~ ( l i d u i + l t d u i ) d S  , . . . . . .  (12) 

where the integral is taken over the surface of the unit cube, 1 i being 
the unit outward normal, and du  i the incremental microscopic 
displacement (the coordinate axes are taken parallel to the cube edges). 
When the microscopic displacement is a continuous function of position 
(no opening of cavities or sliding of one grain over another), Green's 
theorem gives 

1 a 

= [ (d~i j )dV,  
J 

taken through the volume of the unit cube, where deit is the microscopic 
strain-increment. Since the latter is a symmetric tensor with zero 
hydrostatic part so also is dE it  
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Distortion of a Polycrystalline Aggregate under Combined Stresses 423 

Consider the work of deformation within a unit cube. I t  is 

dW:~(a~de~t)dV=~(a~iduil~)dS . . . . .  (13) 

provided the displacement function is continuous and the equilibrium 
equations are satisfied. At grain boundaries, or elsewhere, the 
microscopic stress is not necessarily continuous in all its components, 
and only the stress resultants acting on opposite sides of such a surface 
must be the same for equilibrium. 

We now postulate that  the grains are distributed in the unit cube in 
such a way that  there is no correlation between any component of the 
microscopic stress and any component of the displacement over any 
plane section of unit area. This is so provided that  

1aildA×ldukdA~-~(afjduk)dA(i,j ,  k~--l, 2, 3), . (14) 

where the integration extends over the unit section. In particular, this 
is satisfied when the stress is uniform or when the strain is uniform (the 
stress being distributed according to (b) above). Applying (] 4) to each 
face of the unit cube, we find from (13) that  

dW=~(aiideii)dV:SiidE~t,  . . . . .  (15) 

where S,. i is the macroscopic stress tensor defined in (b). 

(i) Maximum Work Principle for an Aggregate. 
Let S~ be any macroscopic stress corresponding to an equilibrium 

microscopic distribution ai~ not violating the yield conditions at any 
point of a unit cube. Then, from (15), 

(Si~--S~)dEo.=i{(ail--a~)deij }dV~O, . . . . (16) 

since (9) holds at every point. We have thereby derived (4) from assumed 
properties of a single crystal. I t  is worth noting that (16) is still true 
even if du i is tangentially discontinuous across certain surfaces provided 
the corresponding frictional stress vanishes. This is approximately true 
in high-temperature creep where relative slip occurs between grains. 

(ii) Minimum Shear Principle for an Aggregate. 
Let du i and du* be two continuous displacement distributions, with 

zero divergence, taking the same values on the surface of a unit cube. 
du i is associated with an equilibrium distribution of stress aij satisfying 
the yield conditions. Then 

[(a~sdeij )dV=[(a~jde~) dV or S~dE~j-~Si~dE~, 

and so I (27~ dr) d V =  I (ZT d~*) dV. 

I f  r k = r  ~ for each direction at any point (no B&uschinger effect), 

Z~-dT-~Zr,]dT], Zrdy*~Z~- , ldr*  ]. 

Hence S~.~ dE;s= 1 (~YTVk [ d7 D dV < f (Z~- k ] d~* ])dV . . . .  (17) 
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424 J . F . W .  Bishop and R. Hill on a Theory of the Plastic 

When the critical shear stress is uniform throughout the aggregate: 

~ ( Z [ d r l ) d V ~ f ( Z [ d r * D d V  . . . . . .  (18) 

This is true whether or not the aggregate has the properties ascribed 
to the unit cube. There is a close formal analogy between (17) and (7), 
and between (18) and (8). 

On combining (16) and (17) we have for a unit cube, when r k : r ~  

S S d E i j ~ s , j a E ~ j ~ I ( Z . r , [ a r * [ ) d V  . . . . .  (19) 

Another inequality that  will be used later is 

Sij d E S ~ l ( Z . r  k [dr* D d V  . . . . . . .  (20) 

where du* is any continuous distribution. 
It  is to be noticed carefully that  in establishing these extremum 

principles for an aggregate there is an implicit assumption, not merely 
that slip is the only mechanism of distortion, but  that  it is also a suJfi~ient 
mechanism. In other words, it is assumed that  the equations of 
equilibrium (5) can be satisfied throughout an aggregate by  a stress 
distribution which, at the same time, will everywhere operate sufficient 
shears to produce a continuous displacement. For this to be 
mathematically possible, it may well be that  the microscopic stress and 
strain must be allowed to vary continuously, and not be restricted to take 
constant values within each of a finite number of regions (which may be 
grains or parts of grains). I f  a continuous variation is envisaged, the 
relations between microscopic stress and strain, established for a crystal 
of a certain finite size, must be assumed to apply at a point. This, 
of course, is a procedure that  is adopted in every branch of mechanics. 

§ 5. CALCULATIOI~ OF THE YIELD SURFACE. 

In § 4 (i) a maximum work principle for an aggregate has been shown 
to hold when slipping under a critical shear stress is the only microscopic 
mechanism of distortion. I t  follows from § 2 (ii) that  a plastic potential 
governs the relation between macroscopic stress and strain-increment, 
and that the plastic potential is identical with the yield function. I f ,  
therefore, the yield function can be calculated for any particular metal 
the relationships between the ratios of the stress components and the 
ratios of the strain-increment components follow immediately from (3). 

We consider first what general properties of the yield function follow 
from the assumption of deformation by slip. I t  is evident that  the 
hydrostatic part of the applied stress has no influence on yielding ; that  is, 
the yield surface is cylindrical (though not, of course, necessarily circular). 
This follows since the superposition of a uniform hydrostatic stress 
throughout a plastic aggregate does not disturb the equilibrium of the 
microscopic stresses, nor does it alter the active slip-directions at any 
point, when the influence of elasticity is disregarded. In reality, however, 
a certain effect of hydrostatic stress would be expected in an aggregate 
of elastically anisotropic grains. 
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Distortion of a Polycrystalline Aggregate under Combined Stresses 425 

I f  the critical shear stress does not depend on the sense of slip, and if 
the aggregate is free from internal stress when the applied loads are 
removed after cold-work, the yield surface for that  state is symmetrical 
about the origin. That is, if S;j produces yielding when the aggregate is 
reloaded under constant stress-ratios so also will --Sii. For the elastic 
compatibility equations are linear in the stresse~, and hence if a 
microscopic distribution a;j. corresponding to Sis can be established by 
monotonic loading from a stress-flee state so also can a distribution --ai~ 
corresponding to --Sir  Furthermore, ff aii satisfies the yield conditions 
at  any point so does --ao. , and if d%.j is the increment of strain associated 
with aii, - -dei i  is the increment associated with --aii.  Plastic deformation 
would thelefore be initiated under the stless --Sij. 

When the aggregate is macroscopically isotropic the yield surface can 
be shown to possess a six-fold symmetry in principal-stress space (Hill 
1950, p. 18). Since this symmetry does not depend on any particular 
mechanism of plastic distortion, we do not need to discuss it here. 

The exact calculation of the yield surface appears to be a matter  of 
some difficulty. In the present paper we shall merely show that  it is 
possible to calculate, with comparative ease, two cylindrical surfaces 
between which the yield surface must certainiy lie when there is no 
Bausehinger effect. For this purpose we use the inequalities established 
in the last section. In one case we consider an aggregate in which the 
stress is uniform but displacement continuity is violated, and in the other 
case we consider an aggregate in which the strain is uniform but 
equiliblium is violated. 

Take first the uniform stress distribution 

a~j=2*r~j, rig=Sig/(SijSig) 1/2 . . . . . .  (21) 

where, for given stress-ratios r,j, A* is to be chosen so ~hat the critical 
shear stress corresponding to a~*j is just attained in one slip-direction 
at  the weakest point of the aggiegate. I t  is then certain that  a# 
does not violate the yield conditions anywhere in the aggregate, a~ is 
therefore an equilibrium distribution such as is envisaged in (16) (the 
displacement function being continuous) which leads to 

(Si~Sit) 1/2= ] Sii[ ~ 2 "  . . . . . . .  (22) 

Hence, for each direction rij in stress hyperspace, (22) supplies a lower 
limit to the length of the corresponding " radius " to the yield surface. 
Since we know that  the surface is cylindrical we need only take stresses S;j 
with zero hydrostatic part in (21). 

Next take any uniform strain distribution dE~j=dE~] with zero 
hydrostatic part, and such that  r~jdE~j>0. Let @* be any of the sets 
of shears which are equivalent to the strain dE~*j, dg,* is a function of 
position since the lattice orientation varies through the aggregate. Let a 
quanti ty t** be defined such that  

/~*= ~ (27~ k ] d~* ]) dV/ri~ dE~ . . . . . .  {23) 
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426 J . F . W .  Bishop and R. Hill on a Theory of the Plastic 

where r~j is defined in (21) and the integration extends through the unit 
cube. Then, by (20), 

[ [ . . . . . . . . . .  

According to (10) the least possible value o5/~* for any choice of dE~ is 
to be obtained by taking d~* to be a physically possible set of shears for 
each orientation, the " crystallites " being supposed completely 
independent. Then 

* * * 

~-(dEi~a~dV)/(r~jdE~j) . . . . . . .  (25) 
where c~j is a stress which would produce the strain dE~j in a free crystal. 
An advantageous choice of dE~ appears to be d E ~ r ~ j  (an arbitrary scale 
factor can obviously be omitted for convenience). Then, since ri lr i i :  l, 

, * /~ : r , . j  ~aij dV . . . . . . . .  (26) 

This value of ~* is equal to the work which would be done if a unit cube 
of aggregate were split into its constituen$ regions of uniform orientation 
and each were separately given the strain r;j. 

§ 6. DEPENDENCE OF YIELD SURFACE ON STRAIN-HISTORY. 

We have not yet considered how the shape and size of the yield surface 
depend on the previous strain-history. For simplicity let us disregard 
possible Bauschinger effects both in a crystal grain and in the aggregate 
as a whole, and suppose also that  the critical shear stress is the same in 
all slip directions. I f  there were no work-hardening it is evident that  the 
shape and size of the yield surface would be preserved during continued 
deformation, provided the distribution of orientations did not vary. (This 
last condition will not be satisfied whenever a preferred orientation is 
developed during cold-working). When work-hardening occurs the 
grains harden by different amounts, due partly to the non-uniform 
distortion and partly to their different orientations. However, to a first 
approximation, it seems reasonable to expect that  the yield surface will 
simply increase in size without changing shape. The size will be 
proportional to some mean value of the critical shear stress. 

There is some evidence (Taylor 1927) tha t  the shear yield stress of 
a crystal is, very roughly, a function only of the total shear. That is, 

where the function F is the hardening curve in simple slip. Now we have 
seen that the work done on the aggregate unit cube during an increment 
of strain is 

dW= [. (rZ, Id7])dV, 

Idol, 
say, where r and ~ now denote mean values over the aggregate. Hence, 
approximately 

d W :  ~" d~/F' 
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Distortion of a Polycrystalline Aggregate under Combined Stresses 427 

where F '  is the slope of the shear-hardening curve. Since F '  is a function 
of T only, so also is W. Conversely, the mean critical shear stress is a 
function only of the total plastic work. 

These qualitative considerations lead, therefore, to the conclusion chat 
tbe size of the yield surface is mainly a function of the total plastic work, 
and that  other factors are secondary (in the absence of Bauschinger 
effects). This, indeed, is observed for face-centred cubic metals (see 
Hill 1950, pp. 27-32). 
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