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The background to this lecture can be found in Ch. 4 of
the Jobson book, Volume 1.

At the end of this lecture and on Wednesday we offer a
tutorial on the use of R for MLR, which will be very useful
for the second homework assignment.

The instructor will be Dr. Amit K. Verma




1. Regression residuals are assumed to be normally distributed,
as we had in normal linear regression analysis (LR)

2. A linear relationship is assumed between the dependent
variable and the independent variables (also as in LR).

3. The residuals all have the same finite variance
(homoscedastic) and are approximately rectangular-shaped.

4. The independent variables (x1, X3, x3,...) are not too highly
correlated. In-class question: what do we find numerically
when two variables are highly correlated? What is a practical
method for checking?

. Assumptions in multiple linear regression analysis



Assume a data set with n dependent variables (y, /=1..n), each depending on p
independent variables (x;,, i=1..n, &=1..p) in a linear way, i.e.,

Yi = Po+ B1Zi1n + Pazia + - + BpTip + €5 = x; 3+ e;

(remember that the inner product (dot product) between 2 vectors can be written
as a’b=b"a), Here,

X; =(1 2z z2 -+ zip) and B =Bo B B - Bp)

We can write this as a matrix equation: Y =X3+e
in which the matrices are defined on the next page.

The number of rows (datapoints) in our data matrix is n and the number of variables
to be used (to explain y) is p so n (hnumber of datapoints) must be greater than p.

Constructing the equations




Y =X03+e

(Y1 (z;\ (1 zu - mlp\ (ﬂo\ (e1)

Yo 1 zo1 -+ T9p B1 €2

v ) e a6 e

Dimensions: p+1




As described in Lecture 4, in least squares optimization the residual vector is defined

as XP — Y and the error as the sum of the squares of the residuals, i.e., as the inner
(dot) product:

LB) =IXB-YI°’=XB-Y)'XB-Y)
=Y'Y-Y'XB - XB)TY+ XB)TXB
Remembering that (XB)T = BTXT, we have
L(B) =YTY-YTXB — BTXTY + BTXTXp

oLP) _

The optimal value for B (B) is the solution of T

Solving for the coefficients 1: least squares




LB =Y'Y-YTXp — BTXTY + BTXTXp

What is aLa([f)? We need results from matrix calculus. (Not discussed herel)

ag(;f) = —2YTX + 2B7TX"X = 0 = BTX"X = Y'X

We can show that

Using BTXTX = XTXB and Y'X = XTY, we have (XTX)B = XTY

Finally, we have: B = (XTX)"1XTY. Exactly what we saw in OLS.

Knowing X and Y, we can find B.

. Solving for the coefficients 2: least squares



Suppose we have data relating fuel consumption (in 2001)
to a number of parameters. 50 states plus DC: N = 51.
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State
Alabama
Alaska
Arizona
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Connecticut
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Dist_of_Col
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Indiana
Iowa
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Kentucky
Louisiana
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[ ]

To install in R:
library(alr4)

Note that there is a wide range in the
magnitudes of these quantities, from

7.5t0 2.6 x 10/ — 6 orders of
magnitude.

To avoid mathematical instabilities
that can arise from such a large
spread in data, we will rescale some
of the variable.

Note: Drivers is the number of people over 16 with licenses, Pop is the total population over 16.

A sample problem (not materials!)

Weisberg, S. (2014). Applied
Linear Regression, third edition. 8
New York: Wiley.



Note that use of scaled data reduces the range of the data to 7.5 to 10° — 2 orders
of magnitude.

Tax 1000 Drivers Income Log[Miles] 1000 FuelC State
Pop 1000 Log[2] Pop
18. 1031.38 23.471 16.5271 690.264 Alabama
8. 1031.64 30.064 13.7343 514.279 Alaska
18. 908.597 25.578 15.7536 621.475 Arizona We can use a number Of approaches
21.7 946.571 22.257 16.5824 655.293 Arkansas ) )
18.  844.703 32.275 17.3647 573.913 California to examine what correlations there
22. 989.606 32.949 16.3896 616.612 Colorado . . . .
25. 999.593 40.64 14.3519 549.993 Connecticut are between pairs of variables in this
23. 924.345 31.255 12.5053 626.024 Delaware data
20. 700.195 37.383 10.5831 317.492 Dist_of_Col :
13.6 1000.12 28.145 16.8398 586.346 Florida
7.5 933.303 27.94 16.818 750.907 Georgia H i1l sh 71 )
16. 829.997 28.221 12.0627 426.349 Hawai i ere we will snow £ types: a
25. 925.193 24.18 15.499 628.428 Idaho c 0
19. 819.437 32.259 17.0781 526.238 Illinois Scatterp|0t matrix and a correlation
15. 879.235 27.011 16.521 666.536 Indiana matrix.
20. 867.491 26.723 16.7915 647.002 Towa
21. 909.065 27.816 17.0397 600.902 Kansas
16.4 871.998 24.294 16.268 659.741 Kentucky
20. 800.685 23.334 15.8925 633.735 Louisiana
22. 932.972 25.623 14.4686 584.093 Madne

A sample problem (not materials!)
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. Scatterplot matrix

A scatterplot matrix (pairs,
scaterplotMatrix in R, e.g.) shows
each variable plotted against all the
other variables.

What do we see: a large variation in
Fuel. Some states seem to have more
that 1 driver per person over the age of
16. Fuel use tends to decrease as Tax
increases.

However, while useful in providing
information about correlation of pairs of
data, they do not tell us anything about
joint relationships between the data.

10



Call each type of data, i.e., each variable or "feature" X;.

We can write down the following statistical measures of each datatype.

- 1Y i 2 —
Xi =~ z=: mkgl(in - Xi) = J/S;
Variable Mean | Std Dev | Minimum | Median |[Maximum
Tax 20.155 | 4.5447 7.5 20 29
Drivers | 903.68 | 72.858 | 700.20 909.07 | 1075.29
Income | 28.404 | 4.4516 | 20.993 27.871 40.64
logMiles | 15.745 | 1.4867 | 10.583 16.268 18.198
Fuel 603.13 88.96 317.49 626.02 842.79

. Statistics

11



To put all variables on the same scale, we autoscale the data, i.e., subtract the mean
and normalize by the standard deviation.

i The autoscaled data:

Define. X’ — X—kl Xl for eaCh da‘ta entr Tax  1000Drivers  Income  Log[Miles] 1000 FuelC
. ki — o y f Pop 1000 Log[2] Pop

l ~0.474153  1.75276 ~1.10811  0.525958 0.867082

-2.6745  1.75634 0.372919  -1.35256 -1.11117

~0.474153 0.0675195 -0.634801 0.00564679 0.0938204

. . 0.339975  0.588719 -1.38082  0.563171 0.473964

W|th l = the type Of data (e.g.’ InCOme) ~0.474153 -0.809447 0.86959 1.08935 -0.440827

0.405986 1.1794 1.02099 0.433464 0.0391491

1.06609 1.31648 2.74867 ~0.937138 -0.709714

0.626021  0.283662 0.640461 -2.1792  0.144954

—_— -0.0340838 -2.79287 2.01703 ~3.47214 -3.32325

We have. X’ — O and Ol = 1 ~1.44231  1.32376  -0.0581588 0.736302 -0.301065

o l X -2.78452  0.406611  -0.104209  0.721589  1.54877

l -0.914223 -1.01129 -0.0410864  -2.4769  -2.09959

1.06609  0.295309  -0.948842  -0.16555 0.171978

-0.254119 -1.15624 0.865996 0.896538 -0.976744

h d _F h d d 21.13426 -0.335484 -0.312897  0.521819  0.600356
Suppresses the wide range oT the data an -0.0340838 -0.496682 -0.377592  0.703814  0.380765
] - . 0.185951 0.0739455 -0.132064  0.87071 -0.137437

k bl d | | -0.826209 -0.434811 -0.923234  0.35167  0.523972
makes Comparlsons pOSSI € ana calculations -0.0340838 -1.41361  -1.13888  0.0990846 0.231632
. 0.405986  0.402067  -0.624692  -0.85863 -0.326396

more numerically stable. o730 -0.805872  1.22833  -0.s66042 _o.121082
0.185951  ©.233071  2.15384  -0.426022 -0.78571

-0.254119 0.150374 0.271383 0.772761  0.335452
-0.0340838 -1.65892 0.830503 0.852938 0.672104

-0.386139 -0.588406 -1.66476 0.285351 0.791065
. . . . °
° . . . °




Calculate the covariance matrix (measure of the variance between variables) for the
_ Xki—Xi

autoscaled data Xj,; = = with )ﬁ= 0 and Ox! = 1
lj N —1:2, ki“*kj N —1,2; O_iro_j/
1 N 1 N (Xu—X; S;
"ON-1;2 TN —1 kz=:1 O'i,2 Si

C is a measure of the correlation between the variables.




Tax Drivers Income logMiles Fuel
Tax 1 -0.0858 -0.0107 -0.0437 -0.25%94
Drivers -0.0858 1 -0.1760 0.0306 0.4568
C =1 ncome | 00107 | -0.17¢0 1 -0.2959 | -0.4644
logMiles -0.0437 0.0306 -0.2959 1 0.4220
Fuel -0.25%94 0.4568 -0.4644 0.4220 1

This is a more traditional summary of two-variable relationships.

We see what is also apparent in the scatterplot matrix: relatively small correlations
between the predictors and Fuel, and essentially no correlation between the

predictors themselves. In other words, no single variable explains the variance in the
fuel consumption.

. Correlation matrix



We have defined (p = 5, N = 51):

(1 11 Ti2 T13 3314\ (5(1)\ (Z;\ XTX)f = XTY
X=1. . : : . |B= Y = = f = (XTX)"1XTY

\1 331:v1 xz;rz 331.\’3 37].\74) \/B:p/ \yn)

Please note that numerical instabilities can arise if there are orders of magnitude
variations between the data types and you could get incorrect answers.

We will use the matrix equation in this case and will test by comparing to another
solution (in the textbookt where you can find this dataset, or in the alr4 package in

R) based on rescaled data.

J X +Weisberg, S. (2014). Applied
M atrlx fO rm Linear Regression, third edition. 15
New York: Wiley.



o1 1027.9 46087.6 1448.6 803.003
1027.9  21750. 927469 29185.6 16169.7
M = XTX = [46087.6 927469. 4.19137 x 107 1.30621 x 10° 725822.
1448.6 29185.6 1.30621 x 10° 42136.6 22710.5

1803.003 16169.7 725822 22710.5 12753.9
[ 9.02151 —0.0285205 —0.00408 —0.0598114 —0.193151 |
—0.0285205  0.000978751  5.59937 x 10~¢  0.000042633  0.000160232
M1 = —-0.00408 5.59937 x 10~6 3.92216 x 10~® 0.0000118901 5.4018 x 10~

—0.0598114  0.0000426338  0.0000118901 0.00114276 0.00100021
- —0.19315 0.000160232 5.4018 x 10~®  0.00100021 0.00994784 |

Note the 7 orders of magnitude difference in the entries in M1




Using B = (XTX)"1XTY, we find

154.193 \ (intercept)
—4.22798 Tax
0.471871 | ,Drivers
—6.13533 Income

18.5453 / logMiles

)
|

which agrees with solutions based on alternative numerical solutions.
Y = Bo + f1iTax + By Drivers + BzIncome + B4 logMiles

How do we analyze the quality of this solution?




e We define the residual sum of squares (RSS) Residual error over the 51 datapoints

[Jobson SSE = error sum of the squares] to be 200F
N 150}
the value of E, e.g., RSS = Y (v; — 9;)?, 100}
=1 ,
evaluated at the minimum. You can say that o 52
this is the residue left over after subtracting the el t
fitted values. —100}
~150}
e The variance 0 is RSS divided by its degrees 0 10 20 3 40 50
of freedom (df)
f ® § =672 is often called the
e df = number of cases (data points) minus the standard error of regression
number of parameters in the mean function, * the smaller RSS, the smaller the
heredf =N—(1+4)=N—5 andthe residuals
5 _ RSS * Randomness in the error values

residual mean reis0“ = —— ' '
esidual mean square is 6° = —— is a good thing

The residual sum of squares (RSS) '8

© Richard LeSar, 2020



e \We can also measure the error relative to the

mean Yy, which is equivalent to using y(x) = By
as our fitting function.

The OLS estimate would be found by
minimizing Y (y; — Bo)?
i

The minimum is found with B, = y (note
difference from value with J; = By + B1x;) X

The residual sum of squares is .
[Jobson: SST = total sum of the squares] * There is only one parameter, so

N — —
SYY = iz:l(yi — }7)2 df =N 1

. Another measure of variance 19

© Richard LeSar, 2020



The sum of squares due to regression, §Sy¢4,is $Sycq = SYY — RSS

* the df of §S;¢4 is the df for the mean function (N — 1) minus the df for simple
regression (N — (1 + p)), df = p. Here,p =4

SSreg is the reduction in the residual sum of square from enlarging the mean function
fromy = By =¥ to § = By + B1Tax + B,Drivers + fzIncome + B logMiles
Consider

p2 — SSreg _ | _ RSS

SYY SYY

R? is the coefficient of multiple regression and is 1 minus the fraction of the data that
is unexplained by the variance as described with RSS.

The B; are the coefficients for the solution, which is generally all that is reported
(unfortunately!).




For this dataset, we find:

e RSS =193,700

o« SYY = 395,694

e SSreg = SYY —RSS = 201,994.

e P2 —1 _RSS_
R* =1 SYY—O.SlO

About half of the variance is accounted for using
9 = Bo + B1Tax + B,Drivers + fzIncome + BylogMiles

Explore details of how the various quantities are calculated in R from this website:
http://r-statistics.co/Linear-Regression.html



http://r-statistics.co/Linear-Regression.html

When the number of variables (columns-1) is p and the number of datapoints
(rows) is n. In ordinary circumstances we must have more datapoints than
variables. If the two are close to each other, however, we need to be
careful. If, e.g., n=p+1 then the fit is exact with no degrees of freedom.

Therefore, we can compute an adjusted R? to account for this:

n—1

R>=1-

~ SSE/(n—p-1) _q1_ RSS/(n—p—1)
SST/(n—1) SYY/(n—1)

Here, [Jobson] SSE is the error sum of the squares = RSS
and [Jobson] SST is the total sum of the squares = SYY (previous slides)

1-R*) =1
ma— )

If the two values of R? differ by a large amount then check the dimensions of
your data matrix because it may signal that you do not have enough data.

Adjusted R? 2



We can show that the variances of the coefficients are given by
Var(B) = 62(X"X)™*

The standard errors are \/Varl(ﬁ), in which the square root is taken of each element.

We find for the coefficients and their standard errors:

(intercept) 154.193 194.9062 0.791
T _4.22798 2.0301 2. —2.083
Drivers B =| 0.471871 |stderror(f) =| 0.1285 |tvalue= ——= | 3.672
Income —6.13533 2.1936 stderror(by) | _2.797
logMiles 18.5453 6.4722 2.865

. Variance of the coefficients

23



There are a number of other tests that can be applied to this data.
° F-test
* f-test
* hypothesis testing
e sequential analysis testing

* prediction

All (or most) of these are available in standard statistics packages, such as R.




When independent random samples, n; and n,, are taken from two normal

distributions with equal variances, the sampling distribution of the ratio of the
2

. S . . .
sample variances, F = S—; follows the F distribution:
2

F(p,n—p"), in which p" = p for a function with no intercept and p’ =1 + p if an
intercept is included.

For our case, we will plot the ratio of the mean of SSreg = SYY — RSS

and the 62 = = e F, = 29" _ 11,9924
N-5

o2

We will use the F-distribution to verify or disprove the null hypothesis that the
mean of Fuel does not depend on any of the terms iny.




Given two ¥2 random

variables y% and % then the

random ratio variable

(xx /NY/(x%,/D) has an F distribution with N & D
degrees of freedom. These are described, obviously,
as the numerator and denominator degrees of
freedom, respectively. Like the x?, the F distribution is
positive and skewed to the right.

Again, inferences for multiple regression models,
analysis of variance models and multivariate means
make use of this distribution.

More can be found on p. 20 of Jobson, Vol 1.

Statistics: “F”’ Distribution

dl=1, d2=]
dl1=2, d2=1
d1=5, d2=
dl=10, d?2=1
d1=100, d2=100

nN




The F-distribution F({p, N — (1 + p)}, E,) = F({4,46}, F,) .

Using the distribution, we find that the probability for
F, = 11.9924 that the null hypothesis is true is

PR(>F) = 8.8x1077, which indicates that the null %0'4
hypothesis is not true 02
and Fuel does depend on the terms in%. .
- 0 2 8 10 12 14
ratio
Source dF SS MSS F p-value
Regression P SSreg SSreg/1 9x10-7
psg MSSreq/6?
Residual N-(o+1) RSS 6% = N_G%
Total N-1 SYY

F distribution

27



Suppose we want to see how important taxes are in determining fuel use.
We already have RSS and 62 including tax.

Remove column of tax data from X and solve for B,,¢4, and then calculate
RSS,otax and 62ptqy in the same way as before. Note that there are

df =51 — (1 + 3) = 47 degrees of freedom for the notax case
and 46 for the full solution.

We find:
There is modest
Source df SS MS F p-value | evidence that the
no tax 47 211964 coefficient for Tax
with tax 46 193700 is different from O.
difference 1 18264 18264 434 0043 | o0 dowith other
variables as well.

Effects of specific variables 28




More generally, the whole point of the statistical tests is all about hypothesis testing. The
most common approach is the NULL Hypothesis, called A, which means that the
proposed model being tested can/should be rejected. Before obtaining an answer to
such a hypothesis, however, we must choose the probability or confidence level for
rejection. A very common choice is p=0.05, which says that we are confident to the 95 %
level that the NULL hypothesis can be rejected i.e., it's wrong! You can say that there is
only a 5 % that we are making the wrong choice by rejecting the NULL hypothesis and
accepting that the model is meaningful. The latter is known as accepting the Alternative
Hypothesis, H;. Type | Error (incorrectly rejecting the NULL) is also known as False Positive
and Type Il Error (incorrectly rejecting the Alternative) is also known as False Negative.

As remarked on this website, https://data-flair.training/blogs/hypothesis-testing-in-r/, “A
small p-value (typically < 0.05) indicates strong evidence against the null hypothesis, so
you can reject it. A large p-value (> 0.05) indicates weak evidence against the null
hypothesis, so you fail by rejecting it.” A standard test is, e.g., the “t test” that can be
used to decide if two different samples have the same mean values; in R, this is the
t.test procedure.

Hypothesis Testing 29




The lecture on (part of Monday and) Wednesday will be a
tutorial on the use of R, which will be useful for the first
homework assignment.

It will be given using the usual Zoom link.

The instructor will be Dr. Amit Verma.




