Lecture 10 – Random Forest Amit K. Verma, A.D. (Tony) Rollett

Revised: 21st Apr., 2021

Carnegie Mellon University

Overview

Carnegie Mellon

- Topics Covered
- Random Forest Regressor
 - Decision Trees
 - Tree Pruning
 - Bagging
 - Define RF
 - Confidence Intervals
 - Feature Importance
 - Partial Dependence
 - Tree Interpreter
- Random Forest Classifier
 - Gini Impurity
 - Metrics Precision; Recall; Accuracy

Regression; Feature Selection; Dimension Reduction

 $y = \beta_0 + \beta_1 x + \varepsilon$; assuming the functional form

 $log(da/dN) = \beta_0 + \beta_1 x + \varepsilon;$ which x? -- *LR*

 $log(da/dN) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n + \varepsilon; \quad -- Multiple LR$

Subset Selection; Bias-Variance Trade-off; Ridge / Lasso Regularization

<u>Principal Component Analysis</u> – Maximizes the variance of the data Data – Semiconductor Compounds

{YS, UTS, Elong, RA} = $\beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n + \varepsilon$; -- <u>CCA</u>

Sensitivity Analysis & GB Character with Properties – <u>CCA</u>

Carnegie Mellon

Dataset: High Entropy Alloys

Composition (24 Elements); Phases (5 Phases); Rule of Mixtures (ROM) Density

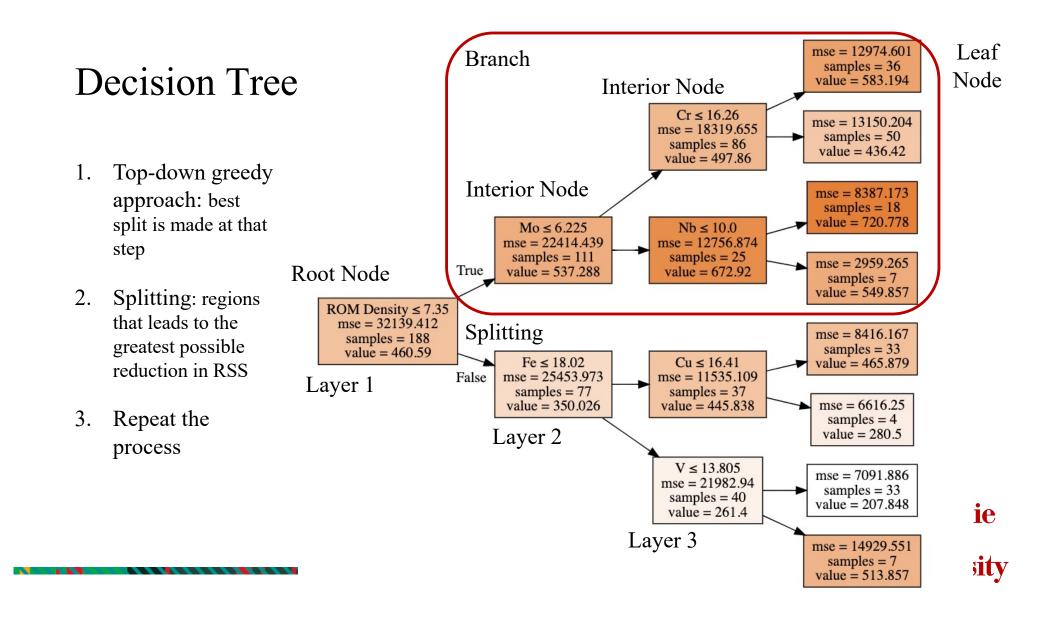
	AI	Co	Cr	Cu	Fe	Hf	Мо	Nb	в	С	 Zr	Zn	Y	BCC	FCC	Im	НСР	B2	ROM Density	Vickers Hardness
0	NaN	33.33	NaN	NaN	33.33	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	0	0	0	8.5	125.0
1	NaN	33.33	NaN	NaN	33.33	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	0	0	0	8.5	125.0
3	NaN	30.77	NaN	NaN	30.77	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	0	0	0	7.7	149.0
4	NaN	28.57	NaN	NaN	28.57	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	1	0	0	7.1	287.0
5	NaN	26.67	NaN	NaN	26.67	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	1	0	0	6.6	570.0
349	NaN	17.86	NaN	NaN	17.86	NaN	17.86	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	1	0	0	8.5	520.0
350	NaN	17.24	NaN	NaN	17.24	NaN	17.24	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	1	0	0	8.5	510.0
351	NaN	16.67	NaN	NaN	16.67	NaN	16.67	NaN	NaN	NaN	 NaN	NaN	NaN	0	1	1	0	0	8.5	382.0
352	NaN	14.29	NaN	NaN	14.29	NaN	14.29	NaN	NaN	NaN	 14.29	NaN	NaN	0	0	0	0	0	7.3	790.0
353	NaN	NaN	NaN	16.67	16.67	NaN	NaN	NaN	NaN	NaN	 16.67	NaN	NaN	0	0	0	0	0	6.8	590.0

Predict: Vickers Hardness

236 rows × 31 columns

University

)



Decision Tree

- 1. Top-down greedy approach: best split is made at that step
- 2. Splitting: regions that leads to the greatest possible reduction in RSS
- 3. Repeat the process

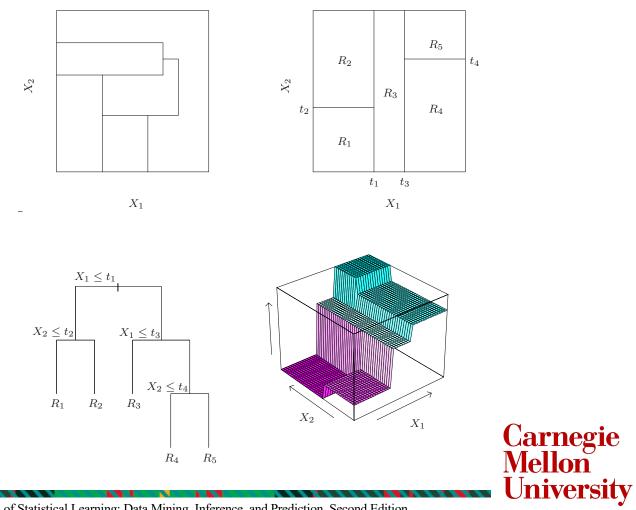
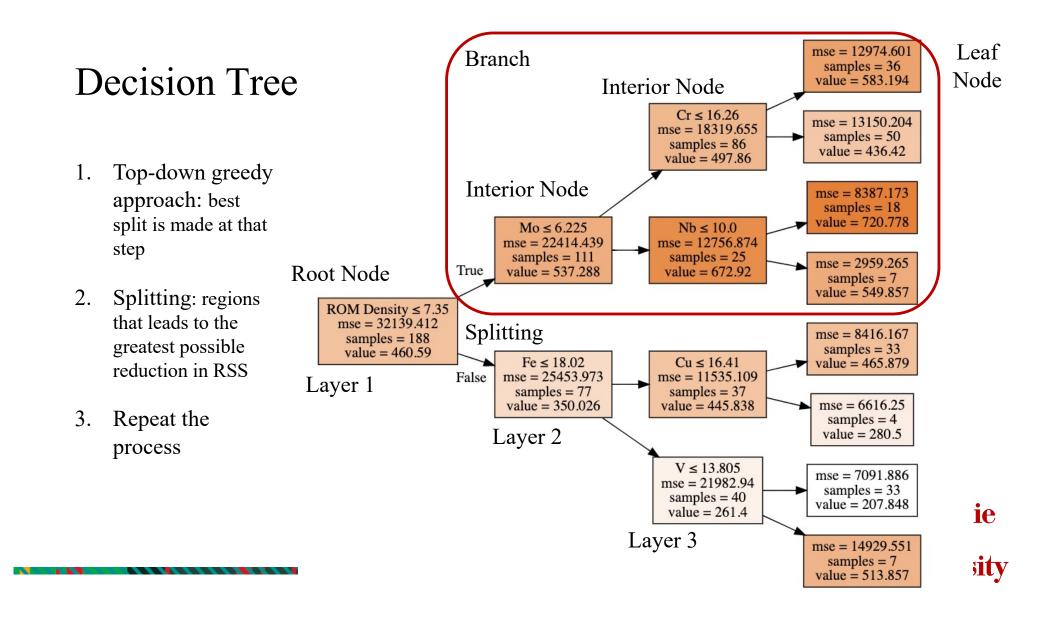


Image: (Figure 9.2) Chapter 9, Friedman et al. - 2009 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition



Overfitting: Tree Pruning

- If each leaf node has only 1 sample $-R^2 \sim 1$ for the training dataset
 - minimum number of observations in a leaf node (number of rows)
 - grid search for finding the optimum value
- Suffers from high variance
 - a small change in the data can cause a large change in the final estimated tree

Bagging

- Reducing Variance: a natural way to reduce the variance and hence increase the prediction accuracy of a statistical learning method is to take many training sets from the population, build a separate prediction model using each training set, and average the resulting predictions
- <u>Bagging</u>: generate different bootstrapped training data sets
 - bootstrap: sampling with replacement
 - each bagged tree makes use of around 2/3 of the observations
 - remaining 1/3 of the observations are referred to as the out-of-bag (OOB) observations
- Each individual tree has high variance, but low bias, averaging these trees reduces the variance
- Reduce overfitting; reduce bias; break the bias-variance trade-off

Random Forest

- Bagged Trees (greedy algorithm) + a small tweak that decorrelates the trees
 - Suppose that there is one very strong predictor in the data set, along with several other moderately strong predictors. Then in the collection of bagged trees, most or all the trees will use this strong predictor in the top split. Consequently, all the bagged trees will look quite like each other
- Each time a split in a tree is considered, a random sample of *m* predictors is chosen as split candidates from the full set of *p* predictors
 - Using a small value of *m* in building a random forest will typically be helpful when we have many correlated predictors

Decision Trees vs Random Forest

- + Trees yield insight into decision rules
- + Rather fast

+ RF has smaller prediction variance and therefore usually a better general performance

+ OOB error "for free" (no CV needed)

-- Prediction of trees tend to have a high variance

- -- Rather slow
- -- "Black Box": Rather hard to get insights into decision rules

Carnegie Mellon

Attributes

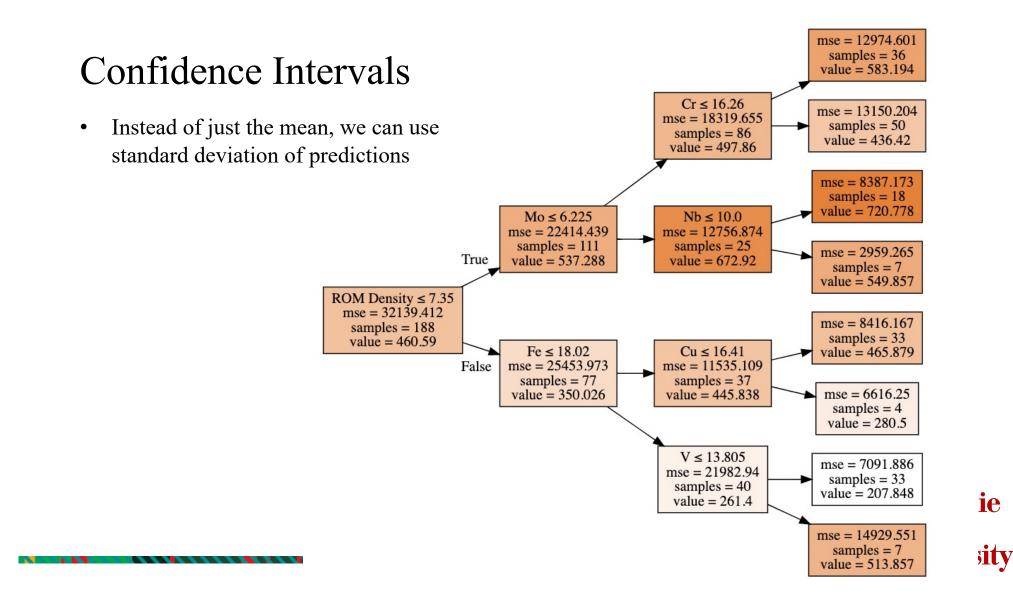
- No statistical assumptions
- Works with any kind of data continuous / categorical intrinsically multiclass
- Can express any function regression / classification
- Works well with small to medium data, unlike neural network which requires large data
- Can handle thousands of input variables without variable selection
 - provide feature importance
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing

Carnegie Mellon

Let's look at the code!

Ref: fast.ai (http://course18.fast.ai/ml) github: https://github.com/fastai/fastai

Carnegie Mellon University



Feature Importance (Overall Interpretation)

- 1. How much each feature decreases the variance in a tree
 - For a forest, the variance decrease from each feature can be averaged and the features are ranked according to this measure
 - Biased towards preferring variables with more categories <u>https://link.springer.com/article/10.1186/1471-2105-8-25</u>
 - When dataset has two (or more) correlated features, then one shows up high while other as low (applies to other methods too)
 - The effect of this phenomenon is somewhat reduced by random selection of features at each node creation
- 2. Random shuffling of the variable
 - permute the values of each feature and measure how much the permutation decreases the accuracy of the model
 - The OOB data is passed along each tree to determine the "test error" (since the OOB were not used to train). See section 15.3.1 in Hastie *et al.*
 - For each variable, the values are permuted in the OOB to evaluate the sensitivity to that variable (from the increase in the test error).

Universitv

Partial Dependence (Single Feature)

- Useful to isolate the effect of a feature
- Based on : <u>https://arxiv.org/abs/1309.6392</u>
- Fill the feature with a constant value and pass through the model

А	В	С	Y
A1	B1	C1	Y1
A2	B2	C2	Y2
A3	B3	C3	Y3

	mean	Y	С	В	Α	
		Y11	C1	B1	A1	
	Y(A1)	Y21	C2	B2	A1	
		Y31	C3	B3	A1	
7		Y12	C1	B1	A2	
	Y(A2)	Y22	C2	B2	A2	
		Y32	C3	B3	A2	
7	Y(A3)	Y(A3)	Y13	C1	B1	A3
			Y23	C2	B2	A3
Carneg]	Y33	C3	B3	A3	
Carneg Mellon		133	63	83	13	

Images from: https://towardsdatascience.com/introducing-pdpbox-2aa820afd312

Tree Interpreter (Local Interpretation)

- Explains a prediction for a given data point
- Gives the sorted list of bias (mean of data at starting node) and individual node contributions for a given prediction

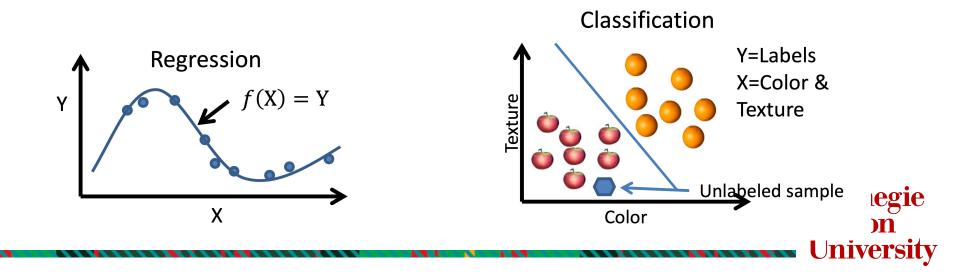
RF Classifier

Supervised Learning

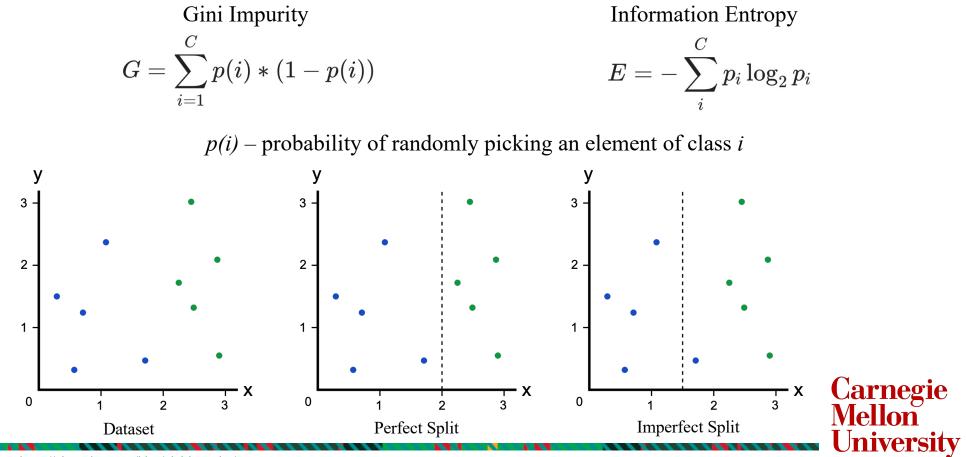
• Find the function f that maps the input data x to the output data y

$$f: x \to y$$

- *y* is continuous: Regression
- *y* is discrete: Classification
- Cross-validation to check performance & determine parameters

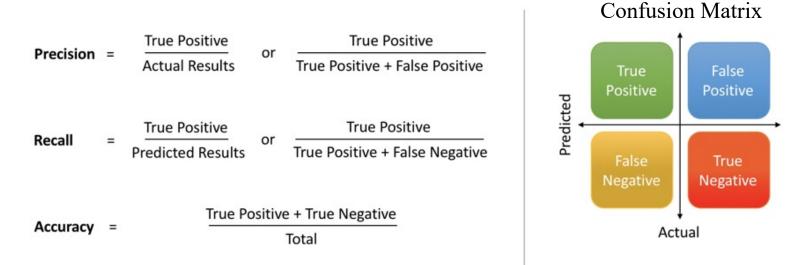


RF Classifier



Images: https://victorzhou.com/blog/gini-impurity/

RF Classifier - Metrics



Carnegie Mellon

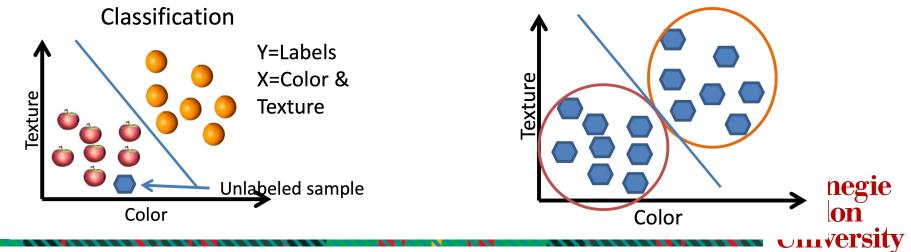
- Precision : reflects how reliable the model is in classifying samples as Positive
- Recall : measures the model's ability to detect Positive samples
- Accuracy : fraction of total correct predictions

Unsupervised Learning

• "Unsupervised": We don't have output data y

("learning without a teacher")

- Interested in relationship between the data *x*
- Learn about *x* from its distribution
- Cross-validation for algorithm performance isn't available
 - Performance checked with: Heuristics & Expert analysis



Note: Dimension reduction is the most common application of unsupervised learning

Questions

Carnegie Mellon University

- Why is it that randomly selecting the validation dataset could be problematic?
- Why OOB score is less than the score for validation dataset?