

Data Analytics for Materials Science

Lecture 4 – Linear Regression in R

Amit K Verma

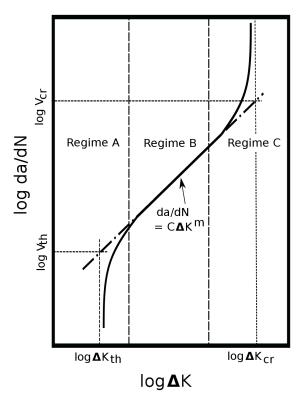
Revised: 10th Feb. 2021

Objectives

- Math behind Linear Regression
 - Analytical Solution
 - Via Matrix Multiplication
- Train a Model within RStudio
 - Understanding the Model Summary
 - Evaluate the Model / Goodness of Fit
- Residuals What they can tell us?
 - Switching Y and X
 - Class Exercise (at the end)
- A good reference book: <u>http://databookuw.com/databook.pdf</u> (chapter 4)
 Data Driven Science & Engineering (avail. in the CMU library)
 Machine Learning, Dynamical Systems, and Control
 By Steven L. Brunton, J. Nathan Kutz, Univ. of Washington

Data

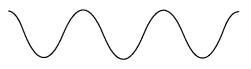
- Bayesian Neural Network Analysis of Fatigue Crack Growth Rate Nickel Base Superalloys – Hidetoshi FUJI; D. J. C. MACKAY; H. K. D. H. BHADESHIA (1996)
 - Modeling <u>fatigue crack growth rate</u> using a Neural Net within a Bayesian framework
 - 51 variables Next Slide

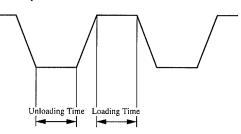

. . .

- Cause: Variations in both thermal and mechanical stress during the flight
 - Typical loading cycle comprises <u>starting up, takeoff and climb, cruising, landing and</u> <u>shut-down</u>
 - Highest stresses are experienced in the bore of the disc early in the flight cycle, generally while it is in the lower temperature range 200 300 °C

Carnegie Mellon

- Stress in the rim region is lower, but at a higher temperature, 500 600 °C
- However, the fatigue propagation is affected by many factors including chemical composition, grain size, heat treatment, temperature, atmosphere, R-ratio, frequency,


Paris Law

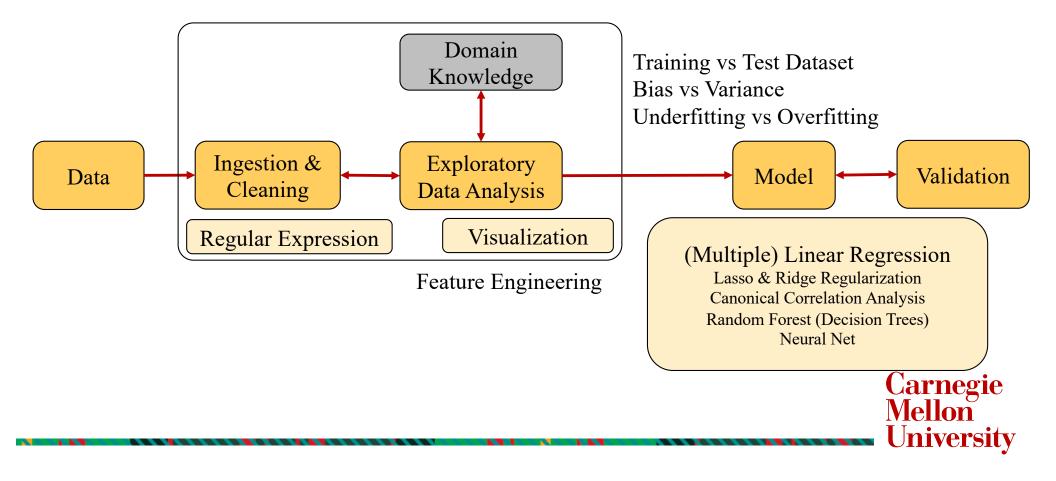

 $\begin{array}{l} Regime \ A-crack \ nucleation \ and \ initiation \\ Regime \ B-crack \ growth \ or \ propagation \\ Regime \ C-sudden \ fracture \end{array}$

Load Shape

Load Shape = 0

Load Shape = 1

• Feature Engineering


• Is it a good representation?

Data	Variable	Range	Mean	Standard Deviat	tion	Variable	Range	Mean	Standard Deviation	_
Output	da/dN, μm	1.0x10 ⁻⁸ - 0.646				Ni, wt%	40- 73	55.34	8.234	
Output	log da/dN, μm	-80.1898				Cr	0.03 - 19.5	14.89	5.127	
Stress Intensity Factor	ΔK , MPa m ^{-1/2}	4.03 -246	27.16	22.47		Co	0 - 17	5.982	7.552	
	$\log \Delta K$, MPa m ^{-1/2}	0.605 - 2.39	1.316	0.3167		Mo	0 - 6	3.094	1.991	
	Temperature, K	293 - 1123	660.3	304.5	\leftarrow	Al	0.3 - 5.5	1.926	1.732	
	Minimum grain size, µm	7 - 5000	295.8	1024	Environment	Ti	0.8 - 3.52	2.107	1.098	
Microstructure	Maximum grain size, µm	7 - 5000	313.2	1022		Fe	0 - 35.56	12.07	12.12	
	Difference in grain size between	-35 - 0	-0.8936	5.432		С	0.007 - 0.06	0.03865	0.01176	
	major phase and minor phase					В	0 - 0.1	0.01418	0.02604	
	1st step Heat Treatment,	1116 - 1578	1321	103.0		Zr	0 - 0.35	0.01907	0.04495	
	Temperature, K					Si	0 - 0.31	0.05634	0.08841	Composition
	Duration, hour	0.5 - 7	2.602	1.685		Nb	0 - 5.35	1.968	2.402	
	Cooling rate, K/sec	-15 - 5	-5.629	3.134		Mn	0 - 0.28	0.03728	0.07740	
Heat Treatment	2nd step Heat Treatment,	0 - 1413	955.8	292.1		Cu	0 - 0.06	4.525 x 10 ⁻³	0.01401	
	Temperature, K					Р	0 - 0.011	8.551 x 10 ⁻⁴	2.438 x 10-3	
	Duration, hour	0 - 24	12.22	9.065		Ca	0 - 0.006	2.598 x 10-4	1.221x 10 ⁻³	
	Cooling rate, K/sec	-5 - 0	-3.036	2.291		Mg	0 - 0.002	8.659 x 10 ⁻⁵	4.071x 10-4	
	3rd step Heat Treatment,	0 - 1143	869.3	312.0		S	0 - 0.005	3.350 x 10-4	1.031x 10-3	
	Temperature, K					Sn	0 - 0.0027	1.169 x 10 ⁻⁴	5.496 x 10 ⁻⁴	
	Duration, hour	0 - 24	10.96	6.179		Pb	0 - 0.00004	1.732 x 10 ⁻⁶	8.143x 10-6	
	Cooling rate, K/sec	-5 - 0	-4.459	1.554		Bi	0 - 0.0000125	5.412 x 10-7	2.545x 10-6	
	Frequency, Hz	0.01 - 100	21.47	29.31		Ag	0 - 0.00001	4.329 x 10 ⁻⁷	2.036 x 10-6	
	Loading Time, s	0 - 600	15.27	71.96		w	0 - 6.5	0.4628	1.539	
Load Waveform	Unloading Time, s	0 - 500	7.439	55.14		Та	0 - 6.5	0.3935	1.385	
	Load Shape	0 or 1	0.7355	0.4412		Hf	0 - 0.1	4.488 x 10 ⁻³	0.02071	
	Atmosphere	1 x 10 ⁻⁶ - 760	691.4	217.9	\leftarrow	Re	0 - 3	0.1346	0.6213	
	R-ratio	0.05 - 0.8	0.171	0.2175		Y2O3	0 - 1.1	0.04704	0.2226	
	Short or long crack growth	0 or 1	0.9161	0.2774						'egie m
Properties	Sample thickness, mm	4.4 -25	11.39	4.063						m
Topernes	Yield Stress, MPa	324 - 1690	911.9	242.3						

https://www.jstage.jst.go.jp/article/isijinternational1989/36/11/36_11_1373/_article/-char/en

Exploratory Analysis Pipeline

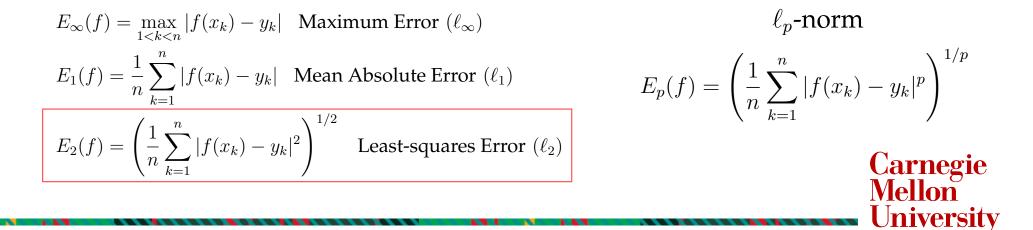
Linear Regression $y = \beta_0 + \beta_1 x + \varepsilon$

 $\log_{10} (da/dN) = \beta_0 + \beta_1 \mathbf{x} + \varepsilon;$ which x?

Paris Law $y = \beta_0 + \beta_1 x + \varepsilon$

 $\log_{10} (da/dN) = \beta_0 + \beta_1 \mathbf{x} + \varepsilon;$ which x?

$\log_{10} \left(\frac{da}{dN} \right) = \beta_0 + \beta_1 \log_{10} \left(\frac{\Delta K}{K} \right) + \varepsilon;$

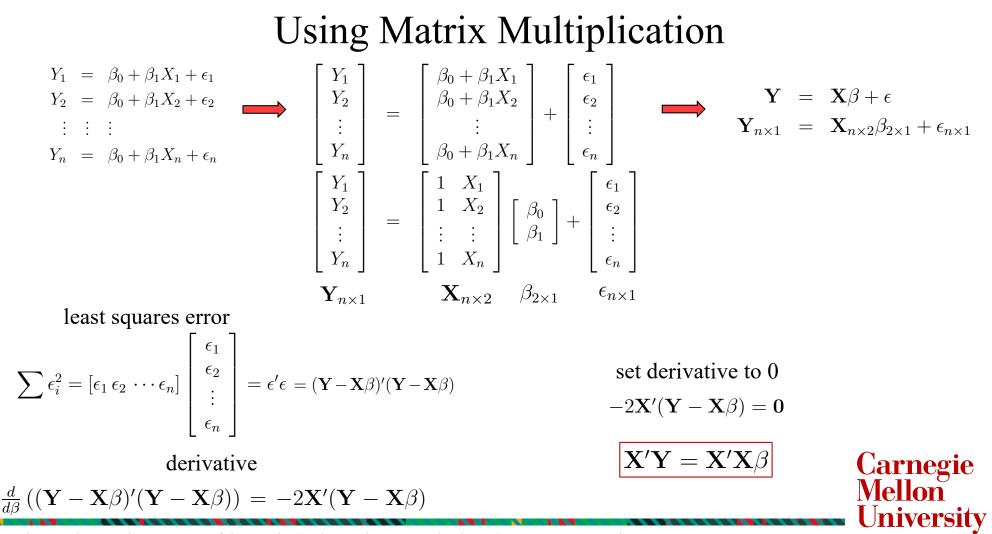

Error Metrics

 $\mathbf{y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x} + \boldsymbol{\varepsilon}$

 $\log_{10} (da/dN) = \beta_0 + \beta_1 x + \varepsilon;$ which x?

 $\log_{10} \left(\frac{da}{dN} \right) = \beta_0 + \beta_1 \log_{10} \left(\Delta K \right) + \varepsilon;$

 $y_k = f(x_k) + \varepsilon_k;$


Solving for Coefficients: Minimize(Least Squares Error)

$$\frac{\partial E_2}{\partial \beta_1} = 0: \quad \sum_{k=1}^n 2(\beta_1 x_k + \beta_2 - y_k)x_k = 0$$
$$\frac{\partial E_2}{\partial \beta_2} = 0: \quad \sum_{k=1}^n 2(\beta_1 x_k + \beta_2 - y_k) = 0.$$

(upon rearranging) in matrix form

$$\left(\begin{array}{cc}\sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k\\\sum_{k=1}^{n} x_k & n\end{array}\right) \left(\begin{array}{c}\beta_1\\\beta_2\end{array}\right) = \left(\begin{array}{c}\sum_{k=1}^{n} x_k y_k\\\sum_{k=1}^{n} y_k\end{array}\right) \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Analytical solution

[&]quot;prime" – denotes the transpose of the matrix (exchange the rows and columns). Same as superscript "T"

We will have an equation that looks like $\hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X} = \mathbf{Y}^T \mathbf{X}$ and will want $\hat{\boldsymbol{\beta}}$, knowing \mathbf{X} and \mathbf{Y} .

How will we solve it?

Taking the transpose of both sides of the equation, we have

$$(\hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X})^T = \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}}$$
 and $(\mathbf{Y}^T \mathbf{X})^T = \mathbf{X}^T \mathbf{Y}$, or $\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$
Finally, we have: $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$.

Knowing **X** and **Y**, we can easily find β .

From L3B

Coefficients & Null Hypothesis

1

Call: lm(formula = log10.da.dN. ~ log10.delta.K., data = temp)					
Residuals:					
Min 1Q Median 3Q Max					
-0.16209 -0.02413 0.01367 0.03109 0.07302					
Coefficients: Estimate Std. Error t value (Pr(> t)					
(Intercept) -10.40212 0.13685 -76.01 <2e-16 ***					
log10.delta.K. 4.40488 0.09176 48.01 <2e-16 ***					
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '					
Residual standard error: 0.05509 on 30 degrees of freedom					

Residual standard error: 0.05509 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16 $\log_{10} \left(\frac{da}{dN} \right) = \beta_0 + \beta_1 \log_{10} \left(\frac{\Delta K}{K} \right) + \varepsilon$

 $\log_{10} (da/dN) = -10.40 + 4.40 \log_{10} (\Delta K) + \varepsilon$

p-value comes from Null Hypothesis (there is no relationship between X and Y)

p-value indicates whether you can reject or accept a hypothesis

> General Rule: p < 0.05 to reject the null hypothesis

Residuals

 $\log_{10} (da/dN) = -10.40 + 4.40 \log_{10} (\Delta K) + \varepsilon$

 $y_k = f(x_k) + \varepsilon_k$; res = $y_k - f(x_k)$

1	Residuals	5:			
	Min	1Q	Median	3Q	Мах
	-0.16209	-0.02413	0.01367	0.03109	0.07302

Coefficients:

Call:

Estimate Std. Error t value Pr(>|t|) (Intercept) -10.40212 0.13685 -76.01 <2e-16 *** log10.delta.K. 4.40488 0.09176 48.01 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lm(formula = log10.da.dN. ~ log10.delta.K., data = temp)

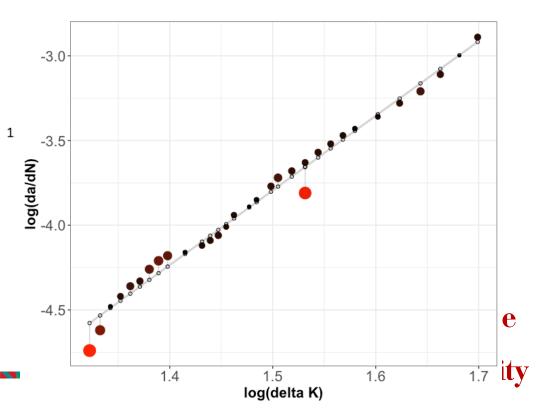
Residual standard error: 0.05509 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16

Carnegie Mellon

Residuals

Call: lm(formula = log10.da.dN. ~ log10.delta.K., data = temp)

1	Residuals	:			
	Min	1Q	Median	3Q	Мах
	-0.16209	-0.02413	0.01367	0.03109	0.07302


Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -10.40212 0.13685 -76.01 <2e-16 *** log10.delta.K. 4.40488 0.09176 48.01 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05509 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16

Residual Sum of Squares (RSS) = $(res_1)^2 + (res_2)^2 + \dots (res_n)^2$ Fitting = Minimize (RSS) $\log_{10} (da/dN) = -10.40 + 4.40 \log_{10} (\Delta K) + \varepsilon$

$$y_k = f(x_k) + \varepsilon_k$$
; res = $y_k - f(x_k)$

Measure (/Goodness) of Fit

Call: lm(formula = log10.da.dN. ~ log10.delta.K., data = temp) Residuals: Min 1Q Median 3Q Max -0.16209 -0.02413 0.01367 0.03109 0.07302 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercent) -10 40212 0 13685 -76 01 <2e-16 ***

(Intercept) -10.40212 0.13685 -76.01 <2e-16 *** log10.delta.K. 4.40488 0.09176 48.01 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05509 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16

Residual Sum of Squares (RSS) = $(res_1)^2$ + $(res_2)^2$ + $(res_n)^2$ Fitting = Minimize (RSS) $\log_{10} (da/dN) = -10.40 + 4.40 \log_{10} (\Delta K) + \varepsilon$

$$y_k = f(x_k) + \varepsilon_k$$
; res = $y_k - f(x_k)$

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$

Avg. amount that y deviates from regression line; Absolute measure of lack of fit

$$R^{2} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}}; \quad \text{TSS} = \sum (y_{i} - \bar{y})^{2}$$

Carnegie Mellon

University

Proportion of variability in $\log_{10} (da/dN)$ that can be explained using $\log_{10} (\Delta K)$

Switching Y and X

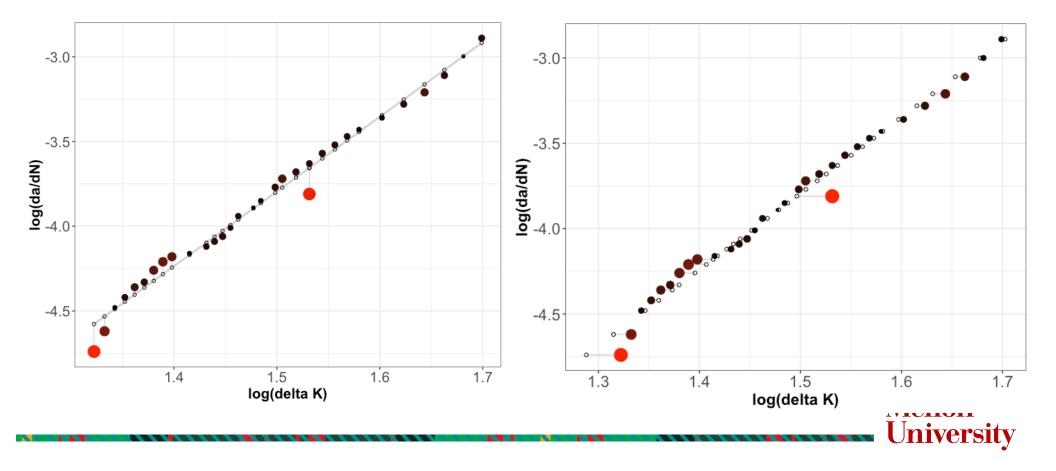
Call: lm(formula = log10.da.dN. ~ log10.delta.K., data = temp) Residuals: Min 10 Median 30 Мах -0.16209 -0.02413 0.01367 0.03109 0.07302 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -10.40212 0.13685 -76.01 <2e-16 *** log10.delta.K. 4.40488 0.09176 48.01 <2e-16 *** _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05509 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16

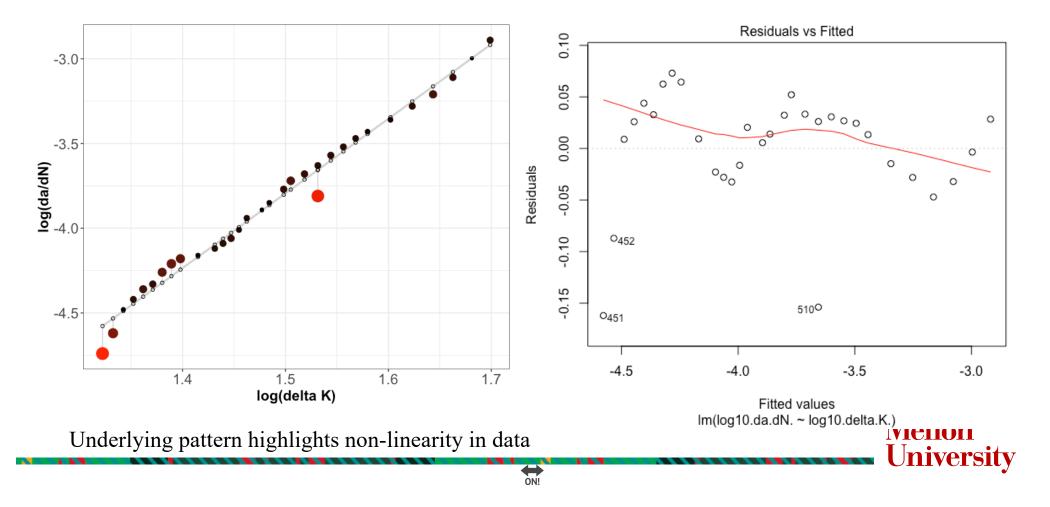
Call: lm(formula = log10.delta.K. ~ log10.da.dN., data = temp)

Residuals:

Min 1Q Median 3Q Max -0.017630 -0.007066 -0.003409 0.004992 0.035041


Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 2.350274 0.018102 129.84 <2e-16 *** log10.da.dN. 0.224104 0.004668 48.01 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Residual standard error: 0.01243 on 30 degrees of freedom Multiple R-squared: 0.9871, Adjusted R-squared: 0.9867 F-statistic: 2305 on 1 and 30 DF, p-value: < 2.2e-16

> Carnegie Mellon

Switching Y and X

More on Residuals

Multiple Linear Regression $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n + \varepsilon$

 $\log_{10} (da/dN) = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 \dots + \beta_n \mathbf{x}_n + \varepsilon;$

all vs subset? Composition; Heat Treatment; Grain Size; Temperature

Next Week!

Carnegie Mellon

Questions

