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Objectives
• Math behind Linear Regression

• Analytical Solution
• Via Matrix Multiplication

• Train a Model within RStudio
• Understanding the Model Summary
• Evaluate the Model / Goodness of Fit

• Residuals – What they can tell us?
• Switching Y and X 
• Class Exercise (at the end)

• A good reference book: http://databookuw.com/databook.pdf (chapter 4) 
Data Driven Science & Engineering (avail. in the CMU library)
Machine Learning, Dynamical Systems, and Control
By Steven L. Brunton, J. Nathan Kutz, Univ. of Washington

http://databookuw.com/databook.pdf


Data
• Bayesian Neural Network Analysis of Fatigue Crack Growth Rate Nickel Base 

Superalloys – Hidetoshi FUJl; D. J. C. MACKAY; H. K. D. H. BHADESHIA (1996)

• Modeling fatigue crack growth rate using a Neural Net within a Bayesian framework
• 51 variables - Next Slide 
• Cause: Variations in both thermal and mechanical stress during the flight 

• Typical loading cycle comprises starting up, takeoff and climb, cruising, landing and 
shut-down

• Highest stresses are experienced in the bore of the disc early in the flight cycle, generally 
while it is in the lower temperature range 200 – 300 oC

• Stress in the rim region is lower, but at a higher temperature, 500 – 600 oC

• However, the fatigue propagation is affected by many factors including chemical 
composition, grain size, heat treatment, temperature, atmosphere, R-ratio, frequency, 
…  
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maximumvalue and x~i* is the minimumvalue of each
variable of the original data. This normalization is not
essential to the neural network approach but allows a
convenient comparison of the influence of individual
input variables on outputs.
Using the normalized data, the coefficients (weights)

wandbias Oweredetermined in suchawayas to minimize
the following energy function5):

M(w)=pED+~o( E ..........(4)
* ~(.) .*...

The minimization was inplemented using a variable
metric optimizer.40) Thegradient of M(w)wascomputed
using backpropagation algorithm.4 1)Theenergy function
consists of the error function, EDand regularization E~.
Theerror function is the sumsquared error as follws:

l
= ~ED(w)
2 (y(x~; w) - t~)2

.... . ...
..(5)

~
where {x~,t~} is the data set. x~ represents the inputs
and t~ the targets. Themis a label of the pair. Theerror
function EDis smallest whenthe model fits the data well,
i,e., wheny(x~;w) is close to t~. The coefficients wand
biases eshownin Eqs. (1) and (2) makeup the parame-
ter vector w. A numberof regularizers E~(.) are added
to the data error. These regularizers favour functions
y(x;w) which are smoothfunctions of x. Thesimplest reg-
ularization methoduses a single regularizer E~=~~w~-
Here, however, we have used a slightly more compli-
cated regularization method knownas the Automatic
relevance determination model.4) Eachweight is assigned
to a class c dependingon which neurons it connects. For
each input, all the weights connecting that input to the
hidden units are in a single class. The hidden units'
biases are in another class, and all the weights from
the hidden units to the outputs are in a final class. E~(*)
is defined to the sumof the squares of the weights in
class c.42)

lE~(.)(w)=-~w~
•••••

••••••••••(6)

2 ie*

This additional term favours small values of w and
decreases the tendency of a model to 'overfit' noise in
the data set. The control parameters oc, and ptogether
with the numberof hidden units determine the complexity
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of the model. Thesehyperparameters define the assumed
Gaussian noise level a~=l/p and the assumedweight
variances a~(.)= 1/0((.)'(T~ is the noise level inferred by
the model. The parameter oc has the effect of encourag-
ing the weights to decay. Therefore, a high value of a~
implies that the input parameter concerned explains a
relatively large amountof the variation in the output.
Thus, (T~ is regarded as a good expression of the
significance of each input though not of the sensitivity
of the output to that input. The values of the hy-
perparameters are inferred from the data using the
Bayesian methods of Ref. 42). In this method, the
hyperparameters were initialized to values chosen by
the operator, and the weights were set to small random
initial values (Gaussian with meanOand standard
deviation O.3). The objective function M(w) was
minimized to a chosen tolerance, then the values of the
hyperparameters were updated using a Bayesian
approximation given in Ref. 42). The M(w) was mini-
mized again, starting from the final state of the
previous optimization, and the hyperparameters were
updated again, repeating 8times.
Asthe numberof hidden units increases, the difference

((T~) between predicted values and experimental values
decreases monotonically, as shownin Fig. 3. Morecom-
plex relations can be modelled with a larger numberof
hidden units. However, the function maythen be over-
fitted, as shown in Fig. 4, because experimental data
always contain errors. In order to reduce overfitting,
the test error (the value of the error, function for a
non-trained data set) wasmeasured, using 942 randomly
chosen rows of data which were not included in the
training set. Figure 5showsthe change in the test error
as a function of the numberof hidden units. There is a
minimumat 17 hidden units. The increase in the test
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• Feature Engineering 
• Is it a good representation? 

Paris Law

Regime A – crack nucleation and initiation
Regime B – crack growth or propagation
Regime C – sudden fracture 
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Data

https://www.jstage.jst.go.jp/article/isijinternational1989/36/11/36_11_1373/_article/-char/en
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Exploratory Analysis Pipeline

Data Ingestion & 
Cleaning

Exploratory 
Data Analysis

Regular Expression Visualization

Domain 
Knowledge

Feature Engineering

Model Validation

Training vs Test Dataset
Bias vs Variance 
Underfitting vs Overfitting

(Multiple) Linear Regression
Lasso & Ridge Regularization 
Canonical Correlation Analysis
Random Forest (Decision Trees)

Neural Net 



Linear Regression

y = β0 + β1 x + 𝜀

log10 (da/dN)  = β0 + β1 x + 𝜀;         which x? 



Paris Law

y = β0 + β1 x + 𝜀

log10 (da/dN)  = β0 + β1 x + 𝜀;         which x?

log10 (da/dN)  = β0 + β1 log10 (ΔK) + 𝜀;

🔛



Error Metrics
y = β0 + β1 x + 𝜀

log10 (da/dN)  = β0 + β1 x + 𝜀;         which x?

log10 (da/dN)  = β0 + β1 log10 (ΔK) + 𝜀;

yk = f(xk) + 𝜀k;
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Consider a set of n data points

(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn) . (4.5)

Further, assume that we would like to find a best fit line through these points.
We can approximate the line by the function

f(x) = �1x + �2 (4.6)

where the constants �1 and �2, which are the parameters of the vector � of (4.4),
are chosen to minimize some error associated with the fit. The line fit gives the
linear regression model Y = f(A, �) = �1X + �2. Thus the function gives a
linear model which approximates the data, with the approximation error at
each point given by

f(xk) = yk + Ek (4.7)

where yk is the true value of the data and Ek is the error of the fit from this
value.

Various error metrics can be minimized when approximating with a given
function f(x). The choice of error metric, or norm, used to compute a goodness-
of-fit will be critical in this chapter. Three standard possibilities are often con-
sidered which are associated with the `2 (least-squares), `1, and `1 norms.
These are defined as follows:

E1(f) = max
1<k<n

|f(xk) � yk| Maximum Error (`1) (4.8a)

E1(f) =
1

n

nX

k=1

|f(xk) � yk| Mean Absolute Error (`1) (4.8b)

E2(f) =

 
1

n

nX

k=1

|f(xk) � yk|2
!1/2

Least-squares Error (`2). (4.8c)

Such regression error metrics have been previously considered in Chapter 1,
but they will be considered once again here in the framework of model selec-
tion. In addition to the above norms, one can more broadly consider the error
based on the `p-norm

Ep(f) =

 
1

n

nX

k=1

|f(xk) � yk|p
!1/p

. (4.9)

For different values of p, the best fit line will be different. In most cases, the
differences are small. However, when there are outliers in the data, the choice
of norm can have a significant impact.
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Solving for Coefficients: Minimize(Least Squares Error)

140 CHAPTER 4. REGRESSION AND MODEL SELECTION

Minimizing this sum requires differentiation. Specifically, the constants �1 and
�2 are chosen so that a minimum occurs. Thus we require: @E2/@�1 = 0 and
@E2/@�2 = 0. Note that although a zero derivative can indicate either a mini-
mum or maximum, we know this must be a minimum of the error since there
is no maximum error, i.e. we can always choose a line that has a larger error.
The minimization condition gives:

@E2

@�1
= 0 :

nX

k=1

2(�1xk + �2 � yk)xk = 0 (4.12a)

@E2

@�2
= 0 :

nX

k=1

2(�1xk + �2 � yk) = 0 . (4.12b)

Upon rearranging, a 2 ⇥ 2 system of linear equations is found for A and B
✓ Pn

k=1 x2
k

Pn
k=1 xkPn

k=1 xk n

◆ ✓
�1

�2

◆
=

✓ Pn
k=1 xkykPn

k=1 yk

◆
�! Ax = b. (4.13)

This linear system of equations can be solved using the backslash command in
MATLAB. Thus an optimization procedure is unnecessary since the solution is
computed exactly from a 2 ⇥ 2 matrix.

This method can be easily generalized to higher polynomial fits. In particu-
lar, a parabolic fit to a set of data requires the fitting function

f(x) = �1x
2 + �2x + �3 (4.14)

where now the three constants �1, �2, and �3 must be found. These can be
solved for with the 3⇥3 system resulting from minimizing the error E2(�1, �2, �3)
by taking

@E2

@�1
= 0 (4.15a)

@E2

@�2
= 0 (4.15b)

@E2

@�3
= 0 . (4.15c)

In fact, any polynomial fit of degree k will yield a (k +1)⇥ (k +1) linear system
of equations Ax = b whose solution can be found.

Data linearization
Although a powerful method, the minimization procedure for general fitting
of arbitrary functions results in equations which are nontrivial to solve. Specif-
ically, consider fitting data to the exponential function

f(x) = �2 exp(�1x) . (4.16)

Copyright © 2017 Brunton & Kutz. All Rights Reserved.

140 CHAPTER 4. REGRESSION AND MODEL SELECTION

Minimizing this sum requires differentiation. Specifically, the constants �1 and
�2 are chosen so that a minimum occurs. Thus we require: @E2/@�1 = 0 and
@E2/@�2 = 0. Note that although a zero derivative can indicate either a mini-
mum or maximum, we know this must be a minimum of the error since there
is no maximum error, i.e. we can always choose a line that has a larger error.
The minimization condition gives:

@E2

@�1
= 0 :

nX

k=1

2(�1xk + �2 � yk)xk = 0 (4.12a)

@E2

@�2
= 0 :

nX

k=1

2(�1xk + �2 � yk) = 0 . (4.12b)

Upon rearranging, a 2 ⇥ 2 system of linear equations is found for A and B
✓ Pn

k=1 x2
k

Pn
k=1 xkPn

k=1 xk n

◆ ✓
�1

�2

◆
=

✓ Pn
k=1 xkykPn

k=1 yk

◆
�! Ax = b. (4.13)

This linear system of equations can be solved using the backslash command in
MATLAB. Thus an optimization procedure is unnecessary since the solution is
computed exactly from a 2 ⇥ 2 matrix.

This method can be easily generalized to higher polynomial fits. In particu-
lar, a parabolic fit to a set of data requires the fitting function

f(x) = �1x
2 + �2x + �3 (4.14)

where now the three constants �1, �2, and �3 must be found. These can be
solved for with the 3⇥3 system resulting from minimizing the error E2(�1, �2, �3)
by taking

@E2

@�1
= 0 (4.15a)

@E2

@�2
= 0 (4.15b)

@E2

@�3
= 0 . (4.15c)

In fact, any polynomial fit of degree k will yield a (k +1)⇥ (k +1) linear system
of equations Ax = b whose solution can be found.

Data linearization
Although a powerful method, the minimization procedure for general fitting
of arbitrary functions results in equations which are nontrivial to solve. Specif-
ically, consider fitting data to the exponential function

f(x) = �2 exp(�1x) . (4.16)

Copyright © 2017 Brunton & Kutz. All Rights Reserved.

(upon rearranging) in matrix form

Analytical solution



Using Matrix Multiplication

Statistics 512: Applied Linear Models

Topic 3

Topic Overview

This topic will cover

• thinking in terms of matrices

• regression on multiple predictor variables

• case study: CS majors

• Text Example (KNNL 236)

Chapter 5: Linear Regression in Matrix Form

The SLR Model in Scalar Form

Yi = β0 + β1Xi + ϵi where ϵi ∼iid N(0,σ2)

Consider now writing an equation for each observation:

Y1 = β0 + β1X1 + ϵ1

Y2 = β0 + β1X2 + ϵ2

...
...

...

Yn = β0 + β1Xn + ϵn

The SLR Model in Matrix Form

⎡

⎢

⎢

⎢

⎣

Y1

Y2
...

Yn

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

β0 + β1X1

β0 + β1X2
...

β0 + β1Xn

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

ϵ1

ϵ2
...
ϵn

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

Y1

Y2
...

Yn

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 X1

1 X2
...

...
1 Xn

⎤

⎥

⎥

⎥

⎦

[

β0

β1

]

+

⎡

⎢

⎢

⎢

⎣

ϵ1

ϵ2
...
ϵn

⎤

⎥

⎥

⎥

⎦

(I will try to use bold symbols for matrices. At first, I will also indicate the dimensions as
a subscript to the symbol.)
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• X is called the design matrix.

• β is the vector of parameters

• ϵ is the error vector

• Y is the response vector

The Design Matrix
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• Y is the response vector

The Design Matrix

Xn×2 =

⎡

⎢

⎢

⎢

⎣

1 X1

1 X2
...

...
1 Xn

⎤

⎥

⎥

⎥

⎦

Vector of Parameters

β2×1 =

[

β0

β1

]

Vector of Error Terms

ϵn×1 =

⎡

⎢

⎢

⎢

⎣

ϵ1

ϵ2
...
ϵn

⎤

⎥

⎥

⎥

⎦

Vector of Responses

Yn×1 =

⎡

⎢

⎢

⎢

⎣

Y1

Y2
...

Yn

⎤

⎥

⎥

⎥

⎦
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Y = Xβ + ϵ

Yn×1 = Xn×2β2×1 + ϵn×1

2

Parameter Estimation

Least Squares

Residuals are ϵ = Y − Xβ. Want to minimize sum of squared residuals.

∑

ϵ2
i = [ϵ1 ϵ2 · · · ϵn]

⎡

⎢

⎢

⎢

⎣

ϵ1

ϵ2
...
ϵn

⎤

⎥

⎥

⎥

⎦

= ϵ′ϵ

We want to minimize ϵ′ϵ = (Y−Xβ)′(Y−Xβ), where the “prime” ()′ denotes the transpose
of the matrix (exchange the rows and columns).
We take the derivative with respect to the vector β. This is like a quadratic function: think
“(Y − Xβ)2”.
The derivative works out to 2 times the derivative of (Y − Xβ)′ with respect to β.
That is, d

dβ ((Y − Xβ)′(Y − Xβ)) = −2X′(Y − Xβ). We set this equal to 0 (a vector of
zeros), and solve for β.
So, −2X′(Y − Xβ) = 0. Or, X′Y = X′Xβ (the “normal” equations).

Normal Equations

X′Y = (X′X)β

Solving this equation for β gives the least squares solution for b =

[

b0

b1

]

.

Multiply on the left by the inverse of the matrix X′X. (Notice that the matrix X′X is a

2 × 2 square matrix for SLR.)

b = (X′X)−1X′Y

REMEMBER THIS.

Reality Break:

This is just to convince you that we have done nothing new nor magic – all we are doing is
writing the same old formulas for b0 and b1 in matrix format. Do NOT worry if you cannot
reproduce the following algebra, but you SHOULD try to follow it so that you believe me
that this is really not a new formula.
Recall in Topic 1, we had

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
≡ SSXY

SSX

b0 = Ȳ − b1X̄

4

least squares error

”prime” – denotes the transpose of the matrix (exchange the rows and columns). Same as superscript “T”
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derivative
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set derivative to 0
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1
2

We will have an equation that looks like  𝜷
^
"𝐗"𝐗 = 𝐘"𝐗 and will want 𝜷

^
,

knowing 𝐗 and 𝐘. 

How will we solve it?

Taking the transpose of both sides of the equation, we have 

𝜷
^
"𝐗"𝐗

"
= 𝐗"𝐗𝜷

^
and 𝐘"𝐗 " = 𝐗"𝐘, or 𝐗"𝐗𝜷

^
= 𝐗"𝐘

Finally, we have: 𝜷
^
= (𝐗"𝐗)#$𝐗"𝐘 . 

Knowing 𝐗 and 𝐘, we can easily find 𝜷
^
.

🔛

From L3B



log10 (da/dN)  = β0 + β1 log10 (ΔK) + 𝜀

log10 (da/dN)  = -10.40 + 4.40 log10 (ΔK) + 𝜀

p-value comes from Null Hypothesis
(there is no relationship between X and Y)

p-value indicates whether you can reject 
or accept a hypothesis

General Rule: p < 0.05 
to reject the null hypothesis

Coefficients & Null Hypothesis



Residuals
log10 (da/dN)  = -10.40 + 4.40 log10 (ΔK) + 𝜀

yk = f(xk) + 𝜀k; res = yk – f(xk)  

🔛



Residuals
log10 (da/dN)  = -10.40 + 4.40 log10 (ΔK) + 𝜀

yk = f(xk) + 𝜀k; res = yk – f(xk)  

Residual Sum of Squares (RSS) = (res1)2 + 
(res2)2 + ….. (resn)2

Fitting = Minimize (RSS)



Measure (/Goodness) of Fit
log10 (da/dN)  = -10.40 + 4.40 log10 (ΔK) + 𝜀

yk = f(xk) + 𝜀k; res = yk – f(xk)  

Residual Sum of Squares (RSS) = (res1)2 + 
(res2)2 + ….. (resn)2

Fitting = Minimize (RSS)

3.1 Simple Linear Regression 69

Quantity Value
Residual standard error 3.26
R2 0.612
F-statistic 312.1

TABLE 3.2. For the Advertising data, more information about the least squares
model for the regression of number of units sold on TV advertising budget.

deviation of ϵ. Roughly speaking, it is the average amount that the response
will deviate from the true regression line. It is computed using the formula

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2. (3.15)

Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =
n∑

i=1

(yi − ŷi)
2. (3.16)

In the case of the advertising data, we see from the linear regression
output in Table 3.2 that the RSE is 3.26. In other words, actual sales in
each market deviate from the true regression line by approximately 3,260
units, on average. Another way to think about this is that even if the
model were correct and the true values of the unknown coefficients β0

and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average. Of course,
whether or not 3,260 units is an acceptable prediction error depends on the
problem context. In the advertising data set, the mean value of sales over
all markets is approximately 14,000 units, and so the percentage error is
3,260/14,000 = 23%.
The RSE is considered a measure of the lack of fit of the model (3.5) to

the data. If the predictions obtained using the model are very close to the
true outcome values—that is, if ŷi ≈ yi for i = 1, . . . , n—then (3.15) will
be small, and we can conclude that the model fits the data very well. On
the other hand, if ŷi is very far from yi for one or more observations, then
the RSE may be quite large, indicating that the model doesn’t fit the data
well.

R2 Statistic

The RSE provides an absolute measure of lack of fit of the model (3.5)
to the data. But since it is measured in the units of Y , it is not always
clear what constitutes a good RSE. The R2 statistic provides an alternative
measure of fit. It takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1, and is
independent of the scale of Y .

Avg. amount that y deviates from regression line;
Absolute measure of lack of fit

70 3. Linear Regression

To calculate R2, we use the formula

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(3.17)

where TSS =
∑

(yi − ȳ)2 is the total sum of squares, and RSS is defined
total sum of
squaresin (3.16). TSS measures the total variance in the response Y , and can be

thought of as the amount of variability inherent in the response before the
regression is performed. In contrast, RSS measures the amount of variability
that is left unexplained after performing the regression. Hence, TSS−RSS
measures the amount of variability in the response that is explained (or
removed) by performing the regression, and R2 measures the proportion
of variability in Y that can be explained using X . An R2 statistic that is
close to 1 indicates that a large proportion of the variability in the response
has been explained by the regression. A number near 0 indicates that the
regression did not explain much of the variability in the response; this might
occur because the linear model is wrong, or the inherent error σ2 is high,
or both. In Table 3.2, the R2 was 0.61, and so just under two-thirds of the
variability in sales is explained by a linear regression on TV.
The R2 statistic (3.17) has an interpretational advantage over the RSE

(3.15), since unlike the RSE, it always lies between 0 and 1. However, it can
still be challenging to determine what is a good R2 value, and in general,
this will depend on the application. For instance, in certain problems in
physics, we may know that the data truly comes from a linear model with
a small residual error. In this case, we would expect to see an R2 value that
is extremely close to 1, and a substantially smallerR2 value might indicate a
serious problem with the experiment in which the data were generated. On
the other hand, in typical applications in biology, psychology, marketing,
and other domains, the linear model (3.5) is at best an extremely rough
approximation to the data, and residual errors due to other unmeasured
factors are often very large. In this setting, we would expect only a very
small proportion of the variance in the response to be explained by the
predictor, and an R2 value well below 0.1 might be more realistic!
The R2 statistic is a measure of the linear relationship between X and

Y . Recall that correlation, defined as
correlation

Cor(X,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (3.18)

is also a measure of the linear relationship between X and Y .5 This sug-
gests that we might be able to use r = Cor(X,Y ) instead of R2 in order to
assess the fit of the linear model. In fact, it can be shown that in the simple
linear regression setting, R2 = r2. In other words, the squared correlation

5We note that in fact, the right-hand side of (3.18) is the sample correlation; thus,

it would be more correct to write ̂Cor(X, Y ); however, we omit the “hat” for ease of
notation.
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;

Proportion of variability in log10 (da/dN) that 
can be explained using log10 (ΔK) 

🔛



Switching Y and X



Switching Y and X



More on Residuals

Underlying pattern highlights non-linearity in data

🔛



Multiple Linear Regression
y = β0 + β1 x1 + β2 x2 ….. + βn xn + 𝜀

log10 (da/dN) = β0 + β1 x1 + β2 x2 ….. + βn xn + 𝜀;         

all vs subset? Composition; Heat Treatment; Grain Size; 
Temperature

Next Week!



Questions


