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Constitutive Models

« Mechanical constitutive model: Relationship between stress and strain
e Predict deformation response to applied forces

« Mimic the actual material response subjected to different deformation conditions

— Empirical and phenomenological
models (Voce, JC)

— Physics based models (MTS, ZA)
—.. — Artificial Neural Networks

Thesis work by Mandal (Ti5553) & Gockel (Ti6242)

e e — Also, texture development
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A problem with constitutive relations

Most work developing constitutive models is limited to finding
the best fit parameters that capture a specific set of responses
for a specific material under specific conditions — those models
often (generally) lack transferability.

What is needed for efficient development of models is an
understanding of how each parameter in the model affects the
overall response of the model.

We used CCA to examine the sensitivity of the various
parameters in a well-known, quite useful, but very complicated
approach called the MTS model.




A Physics-based Model:
Mechanical Threshold Stress (MTS)

e Plastic deformation accommodated by
dislocation motion
« Mechanical Threshold Stress (MTS):
Flow stress at O K

VaN A

T T . T. . T
—=—24+8(&T)—L+S,(&T)—=
g " & & \
Athermal stress: interaction of Rate dependent interaction of dislocations
dislocations with grain boundaries. with obstacle populations that can be
Grain size dependence: overcome with the assistance of thermal
— activation like interstitial atoms (S.) & stored
ta—ky/ﬂ/dgs (S;)
dislocations (S,)
Evolution Scaling factor to reference
considered when dt, ., u T, term .
—==0,—|1-= 19 parameters, i.e.
there is increase of & Mo es )" Y
stored dislocation | (f ) KT | ( ‘Eﬁ S.(é T)={1— kT ln(@)} } a large number
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straining

1) P.S. Follansbee, Fundamentals of Strength (John Wiley & Sons, Inc., 2014).



MTS parameters

Constitutive parameters of the MTS model along with their nominal values and ranges.

Parameter Nominal (for Local) Range (for CCA) Unit
b3 0.377 [0.3, 0.6] MPa/K
K 2.0 [1, 2]

Ta 2.0 [0, 50] MPa
Ko 47,620 [45,000, 50,000] MPa
Dy 0.122 [0.8, 0.16]

To 500 [180, 600] K

T; 255.2 [100, 800] MPa
6o 1000.0 [500, 5000] MPa
Loi 0.32 [0.25, 2.5]

€0i 1x10° [1x 10% 1 x 108] 1/s
D; 0.5 [0, 1]

q; 1.5 [1, 2]

Zoc 16 [1,2]

€0c 1 x 107 [1x 10% 1 x 108] 1/s
D, 0.667 [0, 1]

q. 1.0 [1, 2]

Teso 340.2 [100, 800] MPa
L0es 0.057 [0, 2]

€es0 1 x 106 [1 x 104 1 x 108] 1/s




MTS Model for beta-T1 Alloys

Trainin .
& Testing
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Strain

Single set of parameters captures response across a wide range
of conditions in single phase regime

Validated with Ti-5553 experimental measurements not used
to train the parameters

Model extrapolated to corresponding loading conditions in
similar B-Ti alloys from literature.

o Warchomicka 2011 (843,1)
—\/PSC prediction (843,1)
Warchomicka 2011 (823,1e-1)
VPSC prediction (823,1e-1)
o Dikovits 2013 (843,1e-1)
VPSC prediction (843,1e-1)
o Jones 2008 (835,1e-2)
VPSC prediction (835,1e-2)
o Liu 2014 (910,1e-2)
——VPSC prediction (910,1e-2)
o Matsumoto 2014 (900,1e-3)
——\/PSC prediction (900,1e-3)

“Simulation of plastic deformation in Ti-5553 alloy using a self-consistent

viscoplastic model”, Mandal et al. (2017), Int. J Plasticity, 94 54-73.



Why Sensitivity Analysis?

Identification of important parameters is quite challenging, especially for complex

models like MTS with many parameters

Sensitivity analysis before calibration leads to simplification of the modeling, the
spotting of errors, better extrapolation and understanding of the model

Local sensitivity analysis: One-at-a-time (OAT) approach to obtain partial derivatives
Local trend near the nominal values in parameter space may be different from global

trends -> Motivates global analysis

Example: How does yield stress change with

the parameter gO0i (activation barri

er)?

——0
—0—0 €

' TO =500 K

TO = 200K |

All other parameters fixed Change one other parameter TO

to nominal values

_ Stress (MPa)

TO

Interaction between 2 parameters; Much
more complicated for 19!

Mandal, Gockel, Rollett, Materials Design 132 30 (2017)




The calculations

Monte Carlo used to randomly choose parameters in their specified ranges (input)

Do three polycrystal plasticity calculations for each set of parameters (experiments)

1.
2.
3.

Temperature = 1300 K, Strain rate=1 s—1
Temperature = 1200 K, Strain rate=1 s—1
Temperature = 1200 K, Strain rate= 10 s—1

Define response parameters: (output: 8 output parameters)

Yield Stresses for each calculation (oyq;, 6y5), Oys»))

Oi(e=0.5) ~ Oi(e=0.1 o
Hardening: Ac; = He=0>) He=01)
0j(¢=0.1) ) Ao
Ae
0., — O Oys
e e e 61 €2
Temperature sensitivity: 7, = ot "
O.o ot to scale!!!
€
E
e OCnr—0O
Rate sensitivity: p — €3 €2
sen o
€2

Mandal, Gockel, Rollett, Materials Design 132 30 (2017)



Global Sensitivity Analysis

| I Q
N iterations

] T
Flow stress response metrics
o Yield Stresses
o Hardening (0, :-0,,)/0, -
o Temperature sensitivity (0,-0,)/0, B
o Rate sensitivity (05-0,)/0, pr—

Mandal, Gockel, Rollett, Materials Design 132 30 (2017)
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Canonical Correlation Analysis

\ Xl + X2 + X3 + X4 +.. } Yl + Y2 +
Canonical Y maximize correlation Q(Z,, Z,)
Variate (CV1) ZX < > Zy

CV2: Explains residual variance from CV1; CV3 explains residual from CV2 and so on

Canonical Correlation Analysis (CCA): Multivariate statistical technique to study of
relationships between multiple dependent & independent variables.

When & Why use CCA?

e Data can be logically split into two sets

e To check if two sets of variables are related

e To find (linear) interrelationships within and between set variables

e Presence of multicollinearity

« Dimensionality reduction; builds on Principal Component Analysis (PCA)

e To quantify variable importance in a model

« To check if a set of variables at one time step can be used to predicting variables
at the next step, i.e., temporal prediction

* For extension to non-linear, see Rickman et al. (Nature) Comp. Matls. 3 26 (2017)




Canonical Correlation Analysis (CCA)

Suppose we have two sets of data, X and Y, each with multiple data types,
from the same set of N observations

* assume p variables in X and g variables in Y

* X s thus an N x p dimensional matrix and Y 1s an N X g dimensional
matrix

CCA provides a way to find the maximum correlations between the X
variables and the Y variables.

CCA does this by finding two sets of basis vectors, one for X and the other
for Y, such that the correlations between the projections of the variables
onto these basis vectors are mutually maximized.

It has some similarities to PCA..

12



CCA: steps

Create autoscaled matrices:

’
Xi
Gx,

X = {X}. X5, X5, X
Y={Y.Y}.... Yo}

Calculate correlation matrices:

o XX
XX_N—l YY —
o XY
XY = N YX =

Cxy = CXT(X

Y'Y
N-1

Y'X
N-1

Cxx

Cxy

Cvyx

Cvy




From Jobson Vol. 2

7.5.2 CANONICAL CORRELATION

Given two random variable vectors y (s x 1) and x (g x 1), we have already
studied two ways of relating the variable elements of y to the variable ele-
ments of x. One way is to examine the degree of linear association between
all possible pairs consisting of one element of y and one element of x using
the covariance matrix X'xy or the corresponding correlation matrix pxy-.
Alternatively, multivariate regression can be used to relate each element of
y to all the elements of x and vice versa. The multivariate linear regression
model determines linear combinations of the x variables that are maxi-
mally correlated with a particular y variable. In this section, we introduce
canonical correlation, which is used to find linear combinations of both sets
of variables y and x that are maximally correlated. Often in practice one
vector of variables is a criterion set and the other vector of variables is a
predictor set. The objective in canonical correlation analysis is to determine
simultaneous relationships between the two sets of variables.

Derivation of Canonical Relationships

As in multivariate regression, we begin with the two random variable
vectors y (s X 1) and x (¢ x 1) which have zero-valued mean vectors

. . Tyy Zyx .
Ky = px = 0 and covariance matrix X = Txy Txx | In this case

there is no intercept term because the variables are assumed to have zero
means.

Let W = B'x and Z = 'y denote linear combinations of the x and
y variables respectively. For each single variable in y, say Y;, we can use

multiple regression to determine the vector 3 that maximizes the correla-
tion between Y; and W. Similarly, for any single variable in x, say X, we

14



From Jobson Vol. 2

182 7. Multivariate Distributions, Regression and Correlation

can use multiple regression to determine the vector o that maximizes-the
correlation between X} and Z. In canonical correlation we simultaneously
determine the vectors a and S in such a way that the correlation between
the two linear combinations Z and W is maximized.

The covariance between Z and W is given by o’ Y'yxB, and the vari-
ances of Z and W are given by o’ Yyya and ' Exx[3 respectively. The
correlation between Z and W is therefore given by

rzw = o' ZyxB/(a/ Byya)'/?(8 TxxB)'/2.

To determine unique values of o and B in order to maximize rzy, side
conditions on the scales of Z and W must also be included. It is convenient
to use the conditions ' Zyya = ' ZxxB = 1.

An Eigenvalue Problem

To maximize rzw subject to o' Zyya = B’ ZxxB = 1 we require solutions
to the two systems of homogeneous equations

(ZxkExy ¥y Zyx — L)B = 0 and

(Zyy ByxZxxExy — dal)a = 0,

where I, (gx ¢) and I, (s x s) are identity matrices. The solution is obtained
by determining the eigenvalues and eigenvectors of the matrices

TxxZxyTyyTyx and I3y Syx Fxk Exy. (7.15)

The eigenvalues of the two matrices are identical, A\, = A, = A, and the
number of positive eigenvalues is ¢, where ¢ = min(s, q) is the rank of the
two matrices in (7.15). Corresponding to each eigenvalue, ), is a unique
pair of eigenvectors a and 3. Denoting by A1, As, ..., )\ the eigenvalues in
order of magnitude from largest to smallest, the corresponding eigenvectors
are denoted by a;, ay,...,a; and B,,3,,..., B;. The correlation between
the two corresponding linear functions a}y and B;-x is given by /A;, j =
| R N—

The maximum correlation solution corresponds to A;, the largest eigen-
value, and hence the correlation is maximized by using Z; = ajy and W; =
B1x. The remaining linear combinations for x given by W5, Wi, ..., W, are
mutually uncorrelated and uncorrelated with W;. Similarly, the remaining
linear combinations for y given by Z5, Zs, ..., Z, are also mutually uncorre-
lated and uncorrelated with Z;. In addition, non-corresponding members of
the two sets are uncorrelated; that is, Z ;j 1s uncorrelated with Wy, k # j,k,
= 12smniit

15



From Jobson Vol. 2

7.5 Multivariate Regression and Canonical Correlation 183

The Canonical Variables

As a result of determining the eigenvalues and eigenvectors of
ZxxExyyyTyx and
25y Zyx Exx Exy,

we have t pairs of canonical variables (Z;, W;) with correlations |/A;
j = 1,2,...,t. Each successive pair of canonical variables maximizes the
correlation subject to being uncorrelated with the previously determined
pairs. In practice all but a small number of pairs usually have negligible
correlations. Typically the eigenvalues A;, j=1,2,...,t decline in a rapid
geometric fashion.

The canonical variables Z and W have been derived using the covariance
matrices and the expressions for Z and W are in terms of the variables
y and x respectively. If the correlation matrices pyy, pxx and pyx are
used, the same eigenvalues would be obtained. If, however, the correlation
matrices are used, the canonical variables are expressed as functions of the
standardized variables. The eigenvectors are not the same, therefore, when
standardized data are used.

Sample Canonical Correlation Analysis

The canonical variates can be estimated using the sample covariance or cor-
relation matrices Sxx, Syy, Sxy and Syx, or Rx_x, Ryy, ny and Ryx
respectively. We assume in this discussion that the correlation matrices are
used. The sample eigenvalues and eigenvectors are therefore determined
from the matrices RxxRxyRyyRyx and RyyRyxRxxRxy and are de-
noted by A1, Ag,..., Ay, bi,bo,... b, and ap,ay,...,a;, respectively.

Canonical Weights and Canonical Variables

The eigenvectors a; and b; are usually referred to as the canonical weights.
These weights can be used to determine the values of the canonical vari-
ates Z; and W;, where Z; = ajy, and W; = b)x. The n values of the
two new variables (Z;, W;) corresponding to the n observations are called
the canonical variate scores. The canonical weights can also be used to in-
terpret the canonical variables and the relationship between the canonical
variables. The canonical variables are interpreted like regression functions.
Each canonical weight gives the marginal impact of that variable on the
canonical variable holding the other variables in the equation fixed. After
each canonical variable of the pair is interpreted, the relationship between
the pair is interpreted.

16
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Inference For Canonical Correlation

Under the assumption that the X's and Y's are multivarite normal, we can
test the hypothesis that the correlations between the canonical variates
are not significantly different from zero. To test the hypothesis that none
of the )A; are significantly different from zero, we use the test statistic
x? = —[n—(3)(s+q+3)]log A, which has approximately a x2 distribution
with sg d.f. if the null hypothesis is true. The statistic A which is given by
A =TI%_,(1 - );) is called Wilk’s Lambda. This statistic is equivalent to
the statistic used to test the independence between two sets of variables
introduced in Section 7.4. If the first hypothesis is rejected, we remove A1,
the largest eigenvalue from A and compute A; = IT{_,(1 — );). We then
test the hypothesis that all remaining A; are not significantly different from
zero, using the test statistic x? = —[n — (3)(s + ¢+ 3)]log A; which has a
x? distribution with (s —1)(g—1) d.f. if the null hypothesis is true. To test
the hypothesis that all remaining ); after the first k are not significantly
different from zero, we compute Ay = H§=(k +1)(1 — )j) where x? now
has (s — k)(g — k) d.f. This process continues until the null hypothesis is
accepted.

An Alternative Test Statistic

An alternative large sample approximation for the distribution of Wilk’s
Lamda under the hypothesis of independence is based on Rao’s F' used
in multivariate regression above. The statistic is given by F = mgi(1 —

Ag)Y/ve /mlkA,lc/"" where

(s—k)(g—k)>—4
(s—k)2+(qg—k)2-5
mix = (s—k)(gq—k)

1
Mok = v[n— 5(3+Q+3)] =

Vi

(s —k)(g—k)
2
which has m and mgy degrees of freedom if all but the first k eigenvectors
are zero. Some computer software for canonical correlation analysis uses
this F-approximation claiming that it is superior to the x? approximation

in small samples.

17



Application 1c

Output example: Flow Stress Responses:

Example of input (independent variables): Parameters
in the Mechanical Threshold Stress (MTS) model for
stress-strain-strain_rate response

DU
YS YS
\171+T0+Pi+g01+ + 5+
| / 7
Canonical maximize correlation 9(Z,, Zy)
Variate (CV1) ZX < > Zy

CV2: Explains residual variance from CV1; CV3 explains residual from CV2 and so on and so forth

Coefficients or Weights: Values that multiply each variable to make up a Canonical Variate
(values that one sees in an equation)

Loadings: Bivariate correlations between canonical variate & real variable (relative importance)
Communality: Sum of squared loadings for all CVs (Overall usefulness)

Redundancy: Averaged cross-loadings across all CVs (Adequacy of prediction)



Canonical Correlation Analysis (CCA)

The 1dea of CCA 1s to evaluate how much of the
variance in one set of variables (“output”, or
“dependent”) can be explained by an associated set of
variables (“input”, or “independent”). Any relationship
1s assumed to be linear and combinations are sought
that maximize the variance explained. The mathematics

used 1s very similar to that of Principal Component
Analysis (CPA).

Here we aim to make connections between the
calculated plasticity response (“output”) and a set of
random model parameters (“input”).

19



Construction of Canonical Functions

Weights

X4 ‘ AX,

{
%3,
Y
9s

Predictor Set
(Independent)

maximize
canonical
correlation

Mandal, Gockel, Rollett, Matls. Design 132 30 (2017)

o,

Ay,

Criterion Set
(Dependent)

20
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CCA Results for MTS model

: : : How important is each parameter?
How much variance is explained? Rc2 P . P
Communality
o ‘Canonical‘Data o Z - ' ' ' '
21| —Fit 5 o] T |
| . | Forcvi o -
TI |
> = P, |
2= GE) : |
A R 2=0.88 £ |
o E05 |
fQ k/ub® |
2f S o 1
N E—
2 1 0 1 2 «
Can X Fo :l
6esO :l
. — o ]
How adequate is the prediction? Redundancy Y m—
I I I Total
v
3 E%ﬁ Which parameter affects which output
‘s 0.4 - s .
2 Tcve responses? Weights & Loadings
@ C_—Jcvs
§0.3 - 4 z
§ P e
g 0.2+ T *6?’ \(5‘5
g Fe Lot
Co1f - : |
A0'2 40'2
0 s W e WP == 403 403
X Given Y Y Given X

Mandal, Gockel, Rollett, Matls. Design 132 30 (2017)



Some explanations

Redundancy coefficients show the proportion
of variance in the variables in one set that is
reproducible from the variables in the other
set. This figure shows that, given the MTS
parameters, the flow stress response can be
modeled with a higher confidence than the
other way around. In other words, the latter
variables cannot be used to infer the model
parameters.

22

How important is each parameter?
Communality

Fraction of Variance Explained

o
a
T

o o o
\“] w &
T T T

o
—

| How adequate is the prediction? Redundancy

X Given Y

I Total

BN CV2
EEEcv3
E=cv4

C—Icve
C—Jcvz
C—Jcvs

MTS Parameters

I CV1 |7

C=Icvs |+

P i N |

Y Given X

Mandal, Gockel, Rollett, Matls. Design 132 30 (2017)

Communality coetticients reter to the sum
of squared loadings across all canonical
functions. The communality coefficient of
a variable quantifies what proportion of
that variable’s variance is reproducible
from the total canonical results and hence
informs about the usefulness of an
observed variable in the entire analysis.



CCA Results for MTS model

23

HoyHow much variance is explained?
|Squared correlation

27 = — I I I :

"Il 1st Canonical Variate captures 88% (Rc?) of the total variance in the dataset.
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CCA Results

How much variance is explained? Rc2
° ‘Canonical‘Data o
21| —Fit i o,
- Y=X XN
& oo For CV1

CanY

R _=0.94
R 2=0.88
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Validation of CCA Predictions: Experiment

e Uniaxial compression of Ti-6242
(Courtesy: Dr. Brian Gockel, AFRL)

« MTS model fitted separately for the three different
temperature regimes with varying deformation

True Stress (MPa)

mechanisms C )

200 0.02 0.04 0;)6 0.08 0.1 1OW Rsen
950 — Parameter RT-200 °C | 316427 °C 538650 °C
o (%) 0.5721 0.5721 0.5721
£ K 3.47 2.55 0.95
8" (Ta) 33 33 33
7750 (ko) 48516.3 48516.3 48516.3
£ 100 (Do) 0.057 0.057 0.057
(To) 98.7 98.7 98.7
6000 0. ;)2 0. ;)4 0 ;)6 0 ;)8 0l1 0. :12 ’Fi 760 5 1 9 487
. ' " True Plastic Strain ' ' 6, 2080 5015 9545
Loi 1.14 4.79 0.61
1100 (60,) 1x 107 1x 107 1 x 107
g Pi 0.48 1.78 2.4
Pl . g 1.08 1.89 0.30
5 s : Goe 1.6 1.6 1.6
E (€oe) 1 x 107 1 x 107 1 x 107
P, 4.1 3.69 0.66
- e 4 0.13 0.05 1.0
’ no T(:':: Plastic Sg;g?n noe o %530 499 416 1328
Exp: points, MTS: line; Black: Quasi-static strain rate, Bocs 38.5 83 0.20
Red: High strain rate (0.01/s) (€es0) 1 x 107 1 x 107 1 x 107

N—
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100

90
80

True Stress (MPa)

10

Validation of CCA predictions: Literature

70
60

© Seshacharyulu, 2002
——MTS fit #1

o Momeni, 2010
—MTS fit #2

0.1

0.2 0.3 0.4 0.5
True Plastic Strain

Two different Ti-6Al-4V plots from
literature showing different YS

MTS param

eters fitted separately

Most important based on fitting:

Pi» T

» Zoi 90 » Loe

Matches with CV1 predictions for 3

parameters

0.6

[1] Momen et al. (2010), Mater. Des. 31, 3599-3604.
[2] Seshacharyulu ef al. (2002), Mater. Sci. Eng. A 325, 112—-125

Parameter MTS fit #1 MTS fit #2
kovb3 0.377 0.377
kap 2 2
taua 7.98 8.03
mul 47620 47620
do 0.122 0.122
T0 500 500
taui 49.36 275.48
th0 500.00 1007.40
g0i 0.29 0.33
ed0i 9.71 x 10°  9.97 x 10°
pi 0.46 0.52
qi 1.48 1.49
gle 1.28 1.17
ed0e 1.19 x 107 1.10 x 107
pe 0.54 0.49
ge 1.27 1.40
taues( 75.25 67.66
gles 0.12 0.09
edes( 1.12x 10"  1.10 x 107

28



Other Applications of CCA =

Microstructure-Property
Relationships Quantified

vMsStress vMStress
250 500 750 e i 250 500 780 icm e
56.2 1.38e+03 56.2 1.38e+03

Hex <0001>

Y Y
‘x ‘x

VvMStress
250 500 750 iom ico
56.2 1.38e+03

Hex <1010>

0.12

0.1

o
o
©

Probability
o
o
(<]

0.04

0.02

0.1
Local strain

220 T T T T T T T
o Exp 860,0.1
——MTS 860,0.1
o Exp 960,0.1
—MTS 960,0.1
o Exp 1045,0.1 |
MTS 1045,0.1
© Exp960,1e-3 |1
MTS 960,1e-3| |
o Exp 960,10
——MTS 960,10

Error Signals

Cross-correlation

Inverse uncertainty in
parameter calibration



Non-linear relationships

e One possibility for non-linear relationships is to use Kolmogorov-
Gabor polynomials, also used in non-linear neural nets:

[(Z) —co—l-Zc@x,—l—ZZcz]x x]—l-yyy‘cwkx T+

=1 5=1 =1 =1 k=1

The same Kolmogorov-Gabor polynomials can be used but as

Zz 023 OZA: o Cigkt xjxg
D ie 023 0 D opeo dijhi T35

Such a set of variables with trial values of the coefficients can

ratios of variable sets:

/(%) =

then be used in a simulated annealing procedure to maximize,

say, an eigenvalue.

"Data Analytics using Canonical Correlation Analysis and Monte Carlo Simulation", J. Rickman, Y.
Wang, A.D. Rollett, M.P. Harmer and C. Compson, (Nature) Computational Materials 3 26 (2017);
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Example: non-linear CCA

Re-analysis of the EBIC and CL
signals versus grain boundary data.

Here, the canonical variate
emphasized the EBIC signal, which
displayed no significant correlation
in the linear form with R=0.26.

Re-analysis allowing for non-linear
relationships yielded R=0.56 and a
high likelihood of correlation.

"Data Analytics using Canonical
Correlation Analysis and Monte Carlo
Simulation", J. Rickman, Y. Wang, A.D.
Rollett, M.P. Harmer and C. Compson,
(Nature) Computational Materials 3 26
(2017)
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Why 1s CCA not popular?

“virtually all of the commonly encountered parametric tests of significance
can be treated as special cases of canonical-correlation analysis, which is the
general procedure for investigating the relationships between two sets of
variables.”

- Knapp (1978)

“One reason why the technique is [somewhat] rarely used involves the
difficulties which can be encountered in trying to interpret canonical results...
The neophyte student of CCA may be overwhelmed by the myriad coefficients
which the procedure produces... [But] CCA produces results which can be
theoretically rich, and if properly implemented, the procedure can adequately
capture some of the complex dynamics involved in reality.”

-Thompson (1980)

“CCA is only as complex as reality itself”
-Thompson (1991)
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When to use CCA?

When the data can be split into two sets and one predicts
another

As an exploratory tool to see if two sets of variables are related

To find the interrelationships between different variables in
both the sets

To quantify the importance of variables in the overall model/
dataset

To check if a set of variables at one time step can be used to
predicting variables at the next step i.e., temporal prediction

Don’t be afraid to try CCA — given a spreadsheet of values, it
only takes a few minutes to calculate. Interpretation is
straightforward once familiar.
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Summary

Local vs. global sensitivity analysis

CCA, a multivariate technique presented as an alternative
CCA shows relative impact & interrelationships (can be
used for calibration & extrapolation)

The parameters taui, TO, pi and g0i in the MTS model
were found to be the most influential overall statistically?m <=9
Validation tests based on experiments and literature
supported the CCA predictions.

Structure

Characterization
| ) Properties

Performance

This technique can be potentially used to quantify Y 6@
structure-property correlations at microstructural level S & W
O

thereby aiding in better integration with continuum Neighp,
models. éé AvgMisor

Current work: sensitivity of texture development in N|T| GepeNo\ N
to CRSS, hardening on different systems §
Future work: Effect of texture on micromechanical °
properties, Analysis of full-field MASSIF simulations

“Application of canonical correlation analysis to a sensitivity study of constitutive model

parameter fitting”, Mandal, S., Gockel, B.T., Rollett, A.D, Materials & Design 132, 30-43 (2017). 34



