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Constitutive Models
• Mechanical constitutive model: Relationship between stress and strain 
• Predict deformation response to applied forces 
• Mimic the actual material response subjected to different deformation conditions
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– Empirical and phenomenological 
models (Voce, JC) 

– Physics based models (MTS, ZA) 
– Artificial Neural Networks 
– Also, texture development 

Thesis work by Mandal (Ti5553) & Gockel (Ti6242)
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Constitutive Modeling
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HEM

HEM

HEM

Ellipsoidal inclusion in homogeneous 
effective medium (HEM)

Anisotropic grains
Effective response at different 

temperatures and rates

Hardening law describes how τ evolves 
with strain, strain rate and temperature: 
o Empirical and phenomenological 

models (Voce, JC) 
o Physics based models (MTS, ZA) 

1) A. Molinari, G. R. Canova, and S. Ahzi, Acta Metall. 35, 2983 (1987). 
2) R. A. Lebensohn and C. N. Tomé, Acta Metall. Mater. 41, 2611 (1993).

• Simulates plastic deformation in polycrystals 
• Gives the macroscopic stress-strain response as 

output

Schmid’s law



A problem with constitutive relations
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Most work developing consWtuWve models is limited to finding 
the best fit parameters that capture a specific set of responses 
for a specific material under specific condiWons — those models 
oZen (generally) lack transferability. 

What is needed for efficient development of models is an 
understanding of how each parameter in the model affects the 
overall response of the model.  

We used CCA to examine the sensi%vity  of the various 
parameters in a well-known, quite useful, but very complicated 
approach called the MTS model.



A Physics-based Model:  
Mechanical Threshold Stress (MTS)
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• Plastic deformation accommodated by 
dislocation motion 

• Mechanical Threshold Stress (MTS):  
       Flow stress at 0 K

τ a = ky dgs

Athermal stress: interaction of 
dislocations with grain boundaries. 
Grain size dependence:  

Rate dependent interaction of dislocations 
with obstacle populations that can be 
overcome with the assistance of thermal 
activation like interstitial atoms (Si) & stored 

dislocations (Sε)
Evolution 
considered when 
there is increase of 
stored dislocation 
density with 
straining
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Scaling factor to reference 
term 19 parameters, i.e.,  

a large number

1) P. S. Follansbee, Fundamentals of Strength (John Wiley & Sons, Inc., 2014).



MTS parameters
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MTS Model for beta-Ti Alloys
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RMSE= 3.6 MPa 
NRMSE= 4.5 %

• Single set of parameters captures response across a wide range 
of conditions in single phase regime 

• Validated with Ti-5553 experimental measurements not used 
to train the parameters 

• Model extrapolated to corresponding loading conditions in 
similar β-Ti alloys from literature.

Training Testing
NRMSE= 13.2 %

“Simulation of plastic deformation in Ti-5553 alloy using a self-consistent 
viscoplastic model”, Mandal et al. (2017), Int. J Plasticity, 94 54-73.



Why Sensitivity Analysis?
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Example: How does yield stress change with 
the parameter g0i (activation barrier)?

• Identification of important parameters is quite challenging, especially for complex 
models like MTS with many parameters 

• Sensitivity analysis before calibration leads to simplification of the modeling, the 
spotting of errors, better extrapolation and understanding of the model 

• Local sensitivity analysis: One-at-a-time (OAT) approach to obtain partial derivatives 
• Local trend near the nominal values in parameter space may be different from global 

trends -> Motivates global analysis

All other parameters fixed 
to nominal values

Change one other parameter T0

T0 = 500 K T0 = 200 K

Interaction between 2 parameters; Much 
more complicated for 19!

Mandal, Gockel, Rollett, Materials Design 132 30 (2017) 



The calculations

9Mandal, Gockel, Rollett, Materials Design 132 30 (2017) 

• Monte Carlo used to randomly choose parameters in their specified ranges (input) 

• Do three polycrystal plasticity calculations for each set of parameters (experiments) 
1. Temperature = 1300 K, Strain rate= 1 s−1  

2. Temperature = 1200 K, Strain rate= 1 s−1  

3. Temperature = 1200 K, Strain rate= 10 s−1  

• Define response parameters:  (output: 8 output parameters) 
- Yield Stresses for each calculation ( ) 

- Hardening:  

- Temperature sensitivity:  

- Rate sensitivity:  

σYS1, σYS2, σYS2

Δσi = (
σi(ϵ=0.5) − σi(ϵ=0.1)

σi(ϵ=0.1) )
Tsen = ⟨ σϵ1 − σϵ2

σϵ2 ⟩
ϵ

Rsen = ⟨ σϵ3 − σϵ2

σϵ2 ⟩
ϵ

σ

ε

σYS
θ =

Δσ
Δε

Not to scale!!!



Global Sensitivity Analysis
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Cor(x, y) = rXY =
(xi − x)(yi − y)

i=1

N

∑

xi − x( )
2

i=1

N

∑ yi − y( )
2

i=1

N

∑

Visual representation of Correlation Matrix

Randomly select 
parameter set

VPSC simulation 
at three 

conditions

Calculate flow 
stress response 

metrics

N iterations

Flow stress response metrics 
o Yield Stresses 
o Hardening (σ0.5-σ0.1)/σ0.1 

o Temperature sensitivity (σ2-σ1)/σ1 

o Rate sensitivity (σ3-σ2)/σ2

Mandal, Gockel, Rollett, Materials Design 132 30 (2017) 



Canonical Correlation Analysis
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Predictor (Xi) or Independent Variables

X1

Criterion (Yj) or 
Dependent Variables

Y1+ X2 X3 X4+ + + … Y2+ + …

Zx  Zy
maximize correlation ρ(Zx, Zy)

Canonical Correlation Analysis (CCA): Multivariate statistical technique to study of 
relationships between multiple dependent & independent variables.

Canonical 
Variate (CV1)

CV2: Explains residual variance from CV1; CV3 explains residual from CV2 and so on

When & Why use CCA? 
• Data can be logically split into two sets 
• To check if two sets of variables are related 
• To find (linear) interrelationships within and between set variables 
• Presence of multicollinearity 
• Dimensionality reduction; builds on Principal Component Analysis (PCA) 
• To quantify variable importance in a model 
• To check if a set of variables at one time step can be used to predicting variables 

at the next step, i.e., temporal prediction 
• For extension to non-linear, see Rickman et al. (Nature) Comp. Matls. 3 26 (2017)



Canonical Correlation Analysis (CCA)
Suppose we have two sets of data, X and Y, each with multiple data types, 
from the same set of N observations
• assume p variables in X and q variables in Y
• X is thus an N x p dimensional matrix and Y is an N x q dimensional 

matrix

 CCA provides a way to find the maximum correlations between the X 
variables and the Y variables.

 CCA does this by finding two sets of basis vectors, one for X and the other 
for Y, such that the correlations between the projections of the variables 
onto these basis vectors are mutually maximized.

 It has some similarities to PCA.
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CCA: steps
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CXX

CYY

CXY

CYX

Create autoscaled matrices: 

 

 

 

Calculate correlation matrices: 

 

 

X′ i =
Xi − Xi

σXi

X = {X′ 1, X′ 2, X′ 3, X′ 4}
Y = {Y′ 1, Y′ 2, …, Y′ 10}

CXX =
XTX
N − 1

CYY =
YTY
N − 1

CXY =
XTY
N − 1

CYX =
YTX
N − 1

CXY = CT
YX



From Jobson Vol. 2
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From Jobson Vol. 2
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From Jobson Vol. 2



From Jobson 
Vol. 2
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Application 18

Input (Xi)

τi

Output (Yj)

YS
1+ T0 pi g0i+ + + … YS

2+ + …

Zx  Zy

maximize correlation ρ(Zx, Zy)

ε

σ YS1

YS2

Example of input (independent variables): Parameters 
in the Mechanical Threshold Stress (MTS) model for 

stress-strain-strain_rate response

Output example: Flow Stress Responses:

Canonical 
Variate (CV1)

CV2: Explains residual variance from CV1; CV3 explains residual from CV2 and so on and so forth

Coefficients or Weights: Values that multiply each variable to make up a Canonical Variate 
(values that one sees in an equation) 
Loadings: Bivariate correlations between canonical variate & real variable (relative importance)
Communality: Sum of squared loadings for all CVs (Overall usefulness)
Redundancy: Averaged cross-loadings across all CVs (Adequacy of prediction)



Canonical Correlation Analysis (CCA)
- The idea of CCA is to evaluate how much of the 

variance in one set of variables (“output”, or 
“dependent”) can be explained by an associated set of 
variables (“input”, or “independent”).  Any relationship 
is assumed to be linear and combinations are sought 
that maximize the variance explained.  The mathematics 
used is very similar to that of Principal Component 
Analysis (CPA).

- Here we aim to make connections between the 
calculated plasticity response (“output”) and a set of 
random model parameters (“input”).

19



Construction of Canonical Functions 20

Mandal, Gockel, Rollett, Matls. Design 132 30 (2017) 



How important is each parameter? 
Communality
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Which parameter affects which output 
responses? Weights & Loadings
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For CV1 

Rc=0.94
Rc

2=0.88

Mandal, Gockel, Rollett, Matls. Design 132 30 (2017) 



Some explanations
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Mandal, Gockel, Rollett, Matls. Design 132 30 (2017) 

Redundancy coefficients show the proportion 
of variance in the variables in one set that is 
reproducible from the variables in the other 
set. This figure shows that, given the MTS 
parameters, the flow stress response can be 
modeled with a higher confidence than the 
other way around. In other words, the latter 
variables cannot be used to infer the model 
parameters. 

Communality coefficients refer to the sum 
of squared loadings across all canonical 
functions. The communality coefficient of 
a variable quantifies what proportion of 
that variable’s variance is reproducible 
from the total canonical results and hence 
informs about the usefulness of an 
observed variable in the entire analysis.  

How important is each parameter? 
Communality
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For CV1 

Rc=0.94
Rc

2=0.88

How much variance is explained?   
Squared correlation
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1st Canonical Variate captures 88% (Rc2) of the total variance in the dataset.

Only first 4 statistically significant.



CCA Results 24

pi , τi , g0i !      

YS !

CV1



How important is each parameter? 
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For CV1 

Rc=0.94
Rc

2=0.88
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Which parameter affects which output responses?  
Loadings

g0i, g0ε 

Input Output

CV3

g0i , g0εs "      τi ! 

Rsen !

CV3 Predictions

CV1 Predictions

pi , τi , g0i !      

YS !



Validation of CCA Predictions: Experiment
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low Rsen

• Uniaxial compression of Ti-6242  
(Courtesy: Dr. Brian Gockel, AFRL) 

• MTS model fitted separately for the three different 
temperature regimes with varying deformation 
mechanisms

Exp: points, MTS: line; Black: Quasi-static strain rate, 
Red: High strain rate (0.01/s)



Validation of CCA predictions: Literature
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[1] Momen et al. (2010), Mater. Des. 31, 3599–3604. 
[2] Seshacharyulu et al. (2002), Mater. Sci. Eng. A 325, 112–125

• Two different Ti-6Al-4V plots from 
literature showing different YS 

• MTS parameters fitted separately 
• Most important based on fitting:

pi , τi , g0i ,θ0 , g0ε 
• Matches with CV1 predictions for 3 

parameters



Other Applications of CCA 29
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Non-linear relationships
• One possibility for non-linear relationships is to use Kolmogorov-

Gabor polynomials, also used in non-linear neural nets:

30

The same Kolmogorov-Gabor polynomials can be used but as 
ratios of variable sets:

square root of these eigenvalues are the canonical correlations. Moreover, the corresponding

eigenvectors may be used to determine the and and, thereby, the canonical variates.

METHODS: CANONICAL CORRELATION ANALYSIS WITH MONTE CARLO SIMULATION

(CCAMC)

While the CCA is extremely useful in highlighting linear relationships among input and output

variables, it may be that a non-linear model of the data is more appropriate in some circumstances.

More formally, one wishes to find some function of the subset of input variables, ,

where , such that the largest eigenvalue in the spectrum of

(or ) is maximized. In practice, this is often tedious, especially for large. With this in mind,

we outline here a strategy using Monte Carlo simulation [16] to identify appropriate non-linear

combinations of variables for a given problem, and then validate this approach for two test cases

below. The CCAMC strategy has the virtue that it can be straightforwardly implemented in most

cases with relatively little computational cost. In addition, parallel computations can be performed

to explore relatively wide regions of parameter space, as described below.

Suppose that one identifies, perhaps from a CCA analysis of data, the aforementioned subset

of input variables , where , that are correlated with the output. It may be

suspected that some (perhaps non-linear) function of these variables is, in fact, strongly correlated

with the output, but the functional form may not be readily apparent. In this case, it is sensible

to consider families of trial functions that ideally form a basis in some infinite-dimensional vector

space. For example, for the vector space of multivariate polynomial functions one may parametrize

the unknown function in terms of Kolmogorov-Gabor polynomials [17]

(3)

where , , etc., are unknown expansion coefficients. This expansion is used extensively in,

for example, polynomial neural networks to identify non-linear relationships between input and

output variables [12]. Alternatively, if variable ratios are more appropriate, one may employ a

multivariate generalization of Padé approximants [18–20]. For example, in the trivariate case, one

can write

(4)

4

square root of these eigenvalues are the canonical correlations. Moreover, the corresponding

eigenvectors may be used to determine the and and, thereby, the canonical variates.

METHODS: CANONICAL CORRELATION ANALYSIS WITH MONTE CARLO SIMULATION

(CCAMC)

While the CCA is extremely useful in highlighting linear relationships among input and output

variables, it may be that a non-linear model of the data is more appropriate in some circumstances.

More formally, one wishes to find some function of the subset of input variables, ,

where , such that the largest eigenvalue in the spectrum of

(or ) is maximized. In practice, this is often tedious, especially for large. With this in mind,

we outline here a strategy using Monte Carlo simulation [16] to identify appropriate non-linear

combinations of variables for a given problem, and then validate this approach for two test cases

below. The CCAMC strategy has the virtue that it can be straightforwardly implemented in most

cases with relatively little computational cost. In addition, parallel computations can be performed

to explore relatively wide regions of parameter space, as described below.

Suppose that one identifies, perhaps from a CCA analysis of data, the aforementioned subset

of input variables , where , that are correlated with the output. It may be

suspected that some (perhaps non-linear) function of these variables is, in fact, strongly correlated

with the output, but the functional form may not be readily apparent. In this case, it is sensible

to consider families of trial functions that ideally form a basis in some infinite-dimensional vector

space. For example, for the vector space of multivariate polynomial functions one may parametrize

the unknown function in terms of Kolmogorov-Gabor polynomials [17]

(3)

where , , etc., are unknown expansion coefficients. This expansion is used extensively in,

for example, polynomial neural networks to identify non-linear relationships between input and

output variables [12]. Alternatively, if variable ratios are more appropriate, one may employ a

multivariate generalization of Padé approximants [18–20]. For example, in the trivariate case, one

can write

(4)

4

"Data Analytics using Canonical Correlation Analysis and Monte Carlo Simulation", J. Rickman, Y. 
Wang, A.D. Rollett, M.P. Harmer and C. Compson, (Nature) Computational Materials 3 26 (2017); 

Such a set of variables with trial values of the coefficients can 
then be used in a simulated annealing procedure to maximize, 
say, an eigenvalue.
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Example: non-linear CCA
• Re-analysis of the EBIC and CL 

signals versus grain boundary data.  
• Here, the canonical variate 

emphasized the EBIC signal, which 
displayed no significant correlation 
in the linear form with R=0.26. 

• Re-analysis allowing for non-linear 
relationships yielded R=0.56 and a 
high likelihood of correlation.

31

"Data Analytics using Canonical 
Correlation Analysis and Monte Carlo 
Simulation", J. Rickman, Y. Wang, A.D. 
Rollett, M.P. Harmer and C. Compson, 
(Nature) Computational Materials 3 26 
(2017)

R=0.26

R=0.56

/
Canonical

Weights

-0.85

7.49

61.32

73.23

2.89

-5.18

2.67

0.093

0.028

TABLE I: The canonical weights and loadings, ( ) and ( ), for the GBCD

variables and the electrical and optoelectronic properties, respectively.

Fig. 4a the corresponding canonical variates, and , are plotted for each of the data points,

along with the associated regression line.

From this analysis, we identify three input variables, namely the components of , that have

significant canonical weights and ask whether the addition of some (possibly) non-linear function

of these variables would lead to a stronger correlation with the output variables. Consider, for ex-

ample, the Padé functional form given in Eq. (4) with the variable set and expansion

exponent . After approximately CCAMC simulations, each comprising itera-

tions, expansion coefficients were found yielding a maximum observed correlation coefficient of

with an associated p-value . In Fig. 4b the corresponding canonical variates are dis-

played for each of the data points, along with the regression line and a confidence interval for

the data. Clearly, this procedure has produced canonical variates with a substantially increased de-

gree of correlation; moreover, the corresponding p-value gives one confidence that this correlation

is real.

9



Why is CCA not popular?

32

“One reason why the technique is [somewhat] rarely used involves the 
difficulties which can be encountered in trying to interpret canonical results... 
The neophyte student of CCA may be overwhelmed by the myriad coefficients 
which the procedure produces... [But] CCA produces results which can be 
theoretically rich, and if properly implemented, the procedure can adequately 
capture some of the complex dynamics involved in reality.” 
-Thompson (1980)

“CCA is only as complex as reality itself” 
-Thompson (1991) 

“virtually all of the commonly encountered parametric tests of significance 
can be treated as special cases of canonical-correlation analysis, which is the 
general procedure for investigating the relationships between two sets of 
variables.” 
- Knapp (1978)



When to use CCA?
• When the data can be split into two sets and one predicts 

another 
• As an exploratory tool to see if two sets of variables are related 
• To find the interrelationships between different variables in 

both the sets 
• To quantify the importance of variables in the overall model/

dataset 
• To check if a set of variables at one time step can be used to 

predicting variables at the next step i.e., temporal prediction 
• Don’t be afraid to try CCA – given a spreadsheet of values, it 

only takes a few minutes to calculate. Interpretation is 
straightforward once familiar.
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Summary
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“Application of canonical correlation analysis to a sensitivity study of constitutive model 
parameter fitting”, Mandal, S., Gockel, B.T., Rollett, A.D, Materials & Design 132, 30-43 (2017).

• Local vs. global sensitivity analysis 
• CCA, a multivariate technique presented as an alternative 
• CCA shows relative impact & interrelationships (can be 

used for calibration & extrapolation) 
• The parameters taui, T0, pi and g0i in the MTS model 

were found to be the most influential overall statistically. 
• Validation tests based on experiments and literature 

supported the CCA predictions. 
• This technique can be potentially used to quantify 

structure-property correlations at microstructural level 
thereby aiding in better integration with continuum 
models. 

• Current work: sensitivity of texture development in NiTi 
to CRSS, hardening on different systems 

• Future work: Effect of texture on micromechanical 
properties, Analysis of full-field MASSIF simulations


