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3Canonical Correlation Analysis (CCA)

Suppose we have two sets of data,  and , each with multiple data 
types, from the same set of N observations 

• assume  variables in  and  variables in  

•  is thus an  dimensional matrix and  is an  dimensional 
matrix 

The  variables considered as independent data, i.e., they are considered 
as input or predictor variables. 

The  variables are dependent data, i.e., they are output. 

The basic idea is that the  variables are considered to occur in response 
to the  variables and correlations may exist in both sets.

X Y

p X q Y
X N × p Y N × q

X

Y

Y
X



4Canonical Correlation Analysis (CCA)

CCA provides a way to find the correlations between the X variables and the 
Y variables. 

CCA does this by finding two sets of basis vectors, one for X︎ and the other 
for Y, such that the correlations between the projections of the variables 
onto these basis vectors are mutually maximized.   

It has some similarities to PCA.



5Grain data (from the USAF Materials Lab)

The grain data was based on 2337 grains from an unnamed superalloy with 11 
measured variables for each grain: 

 

• the position of each grain is  

• the size of each grain is described by  

• the shape of each grain is captured by  

Using PCA was limited by  independent variables and the rest being 
dependent variables:  we could not easily extract out possible position dependence. 
CCA could let us do that.  (By the way, we still may not see anything that is useful.)

{b/a, c/a, a, b, c, xc, yc, zc, Deq., NNeighbors, Ω3}
{xc, yc, zc}

{a, b, c, Deq., NNeighbors}
{b/a, c/a, Ω3}

{xc, yc, zc}

Data from M. Groeber, AFRL from a DREAM3D data file.



6Example 1:  processing and properties for cp-Ti

From a dataset supplied by Prof. Francis Wagner (Univ. of Lorraine, Metz) we 
have a number of experiments (18) in which processing parameters (anneal 
time, anneal temperature (°C), rolling direction, and test direction) and 
measured appropriate materials properties (such as yield stress, strain at 
peak stress, % recrystallized, grain diameter, …) were varied. 

Our question is:  

• What processing parameters have the most influence on the properties 
of the processed material.   

• Which properties are most closely linked to  the processing parameters? 

We will use this problem as our first example of the use of CCA.



7Spreadsheet from Prof. Francis Wagner



8Simplified dataset

Anneal_'m
e

Anneal_Te
mperature_

Rolling_Dir
ec'on

Test_Direc'
on Yield_Stress L_P1 Eng_Stress_

max
Strain_at_p
eak_stress

stress_max-
s_yield

Strain_to_f
ailure

per_cent_re
crystallized

Grain_Diam
eter 1/sqrtD L_P2

120 740 1 1 315 0 466 19.5 151 35 1 11.7 0.29235267 22.5

60 500 1 1 420 1.9 510 19.6 90 32.4 0.91 1.8 0.74535599 21.4

120 470 1 1 490 0 600 14.6 110 27.6 0.62 1.2 0.91287093 20.4

40 500 1 1 439 1 538 17.3 99 33.7 0.8 1.7 0.76696499 0

40 550 1 1 375 1.8 485 21 110 40.2 0.98 2.8 0.59761431 0

120 740 1 1 332 0 468 14 136 24.3 0.98 9.7 0.32108065 14.6

60 500 1 1 404 0 480 7.2 90 13.5 0.69 1.4 0.84515426 9.5

120 470 1 1 544 0 645 10.3 101 22.1 0.46 1 1 17.5

40 500 1 1 526 0 674 12.3 148 22.6 0.8 1.7 0.76696499 0

120 740 1 2 379 1.5 456 9 77 28.5 0.98 9.7 0.32108065 14.7

60 500 1 2 511 0 523.5 0.3 12.5 21.2 0.69 1.4 0.84515426 10.5

120 470 1 2 621 0 672 1.1 51 14.3 0.46 1 1 4.9

40 500 1 2 522 0 579 2.2 57 14.4 0.8 1.7 0.76696499 0

120 740 2 1 300 0 425 19 125 35 1 10.9 0.30289127 24

60 500 2 1 400 3.7 450 19.5 50 43 0.98 1.8 0.74535599 29.4

120 470 2 1 485 2.1 512 17 27 36.5 0.8 1.2 0.91287093 26.2

40 500 2 1 390 3 463 19.3 73 44.5 0.94 1.7 0.76696499 0

40 550 2 1 375 3.9 436 21 61 44.8 0.98 2.6 0.62017367 0



9Example 1:  processing and properties

For CCA, we break the data types into two categories. 

• Input are 4 processing parameters:  (an  matrix) 

- Anneal time, Anneal Temperature (°C), Rolling Direction, Test 
Direction 

• Output are 10 results of tests: (an  matrix) 

-  Yield Stress, L_P1, Eng. Stress (max)}, Strain at peak stress, stress 
at max yield, Strain to failure}, % recrystallized, Grain Diameter (D), 
D-1/2, L_P2       

Goal: find a representation for  and  to capture the maximum correlations 
between the inputs and outputs based on a linear analysis.

18 × 4
X =

18 × 10
Y =

X Y



10Example 1: Anneal_timeAnneal_Temperature_degrCRolling_Direction Test_Direction Yield_Stress L_P1 Eng_Stress_maxStrain_at_peak_stressstress_max-s_yieldStrain_to_failureper_cent_recrystallizedGrain_Diameter 1/sqrtD L_P2

L_P2

1/sqrtD

Grain_Diameter

per_cent_recrystallized

Strain_to_failure

stress_max-s_yield

Strain_at_peak_stress

Eng_Stress_max

L_P1

Yield_Stress

Test_Direction

Rolling_Direction

Anneal_Temperature_degrC

Anneal_time
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11CCA steps

Create autoscaled matrices: 

 

 

 

Calculate correlation matrices: 

 

 

X′ i =
Xi − Xi

σXi

X = {X′ 1, X′ 2, X′ 3, X′ 4}
Y = {Y′ 1, Y′ 2, …, Y′ 10}

CXX =
XTX
N − 1

CYY =
YTY
N − 1

CXY =
XTY
N − 1

CYX =
YTX
N − 1

CXY = CT
YX

CXX

CYY

CXY

CYX

10x10

4x4 4x10

10x4

Tools for CCA available 
in R, MATLAB, SAS, …



12CCA steps: correlation matrix Tools for CCA available 
in R, MATLAB, SAS, …

-0.5

0

0.5

1.0

CXX

CYY

CXY

CYX

XY correlation

-1.0 -0.5 0.0 0.5 1.0

Grain size

Max. Eng. Stress

Yield Strength

Time
Temperature

From R

matcor tool in R



Derivation of CCA equations

13

Datasets: Ax and Ay

Directions: x and y 
Projections (Canonical 
Variates): Zx and Zy

Correlation between the canonical variates

Choice of rescaling is arbitrary

Maximization in the Lagrangian form

Solve Lagrangian by taking partial derivatives

multiply by x’

multiply by y’

ρx = ρy = ρFrom rescaling constraint & last equation, it can be concluded that:



Derivation (contd.)

14

From the partial derivative Rearranging terms

Equations for the Canonical Correlation Analysis

Generalized eigenvalue problems 
Can be solved by: 
•  Given the correlation matrices, this eigenvalue problem can be written as a 

general singular value problem that can be solved by Cholesky factorization 
• Given the data matrices, singular value decomposition (SVD) can be used



Application 15

Input (Xi)

τi

Output (Yj)

YS
1+ T0 pi g0i+ + + … YS

2+ + …

Zx  Zy
maximize correlation ρ(Zx, Zy)

ε

σ YS1

YS2

Example of input (independent variables): Parameters 
in the Mechanical Threshold Stress (MTS) model for 

stress-strain-strain_rate response

Output example: Flow Stress Responses:

Canonical 
Variate (CV1)

CV2: Explains residual variance from CV1; CV3 explains residual from CV2 and so on and so forth

Coefficients or Weights: Values that multiply each variable to make up a Canonical Variate 
(values that one sees in an equation) 
Loadings: Bivariate correlations between canonical variate & real variable (relative importance)
Communality: Sum of squared loadings for all CVs (Overall usefulness)
Redundancy: Averaged cross-loadings across all CVs (Adequacy of prediction)



From Jobson Vol. 2 

16

Note that the canonical correlations 
(square root of the eigenvalues) can 
be large, even when the proportion 
of variance of the underlying 
variables  explained by the canonical 
variates is comparatively small. I.e., 
the canonical variate pairs may be 
very well correlated, even if the 
relationship to the actual variables is 
weaker. 
The latter is quantified by the 
squared structure correlations 
(bottom right of the figure).



17CCA steps

There are a number of ways to solve for the linear combination of variables 
that maximizes the correlation. 

One approach is to define the vector:    

Suppose      

  and   

K = C−1/2
XX CXYC−1/2

YY

C−1 = [ 7 10
15 22] C =

11
2 − 5

2

− 15
4

7
4

C−1/2 =
3 3/11 10/ 33

5 3/11 8/ 3/11
C−1/2C−1/2 = C−1

 



18CCA steps

  

We then perform a singular value decomposition of : 

 

The singular value decomposition (SVD) is a factorization of a matrix that 
generalizes an eigenanalysis of a square normal matrix to any  matrix. 

For the example that we chose of the annealed Ti,  is a  matrix,  is a 
 matrix,  and  is a  matrix with the diagonals being the 

eigenvalues of  (the correlations).  

K = C−1/2
XX CXYC−1/2

YY

K

K = ΓΛΔ

m × n

Γ 4 × 4 Δ
4 × 10 Λ 4 × 4

K

https://en.wikipedia.org/wiki/Singular_value_decomposition



19CCA: , the eigenvalues of Λ K
Canonical Correlation Analysis, Malacarne 2014

0.999464 0. 0. 0.
0. 0.970684 0. 0.
0. 0. 0.95352 0.
0. 0. 0. 0.834025

Λ =

“Thus, if  is the matrix containing the explanatory factors of , the 
matrix containing the criterion measures (or criterion variables), it is 
possible to say that the explanatory factors would perfectly explain the 
criterion variables if . If , the explanatory factors have no 
influence on the criterion variables, and any value between 1 and 0 is 
merely an interpolation of these extreme cases.” 

X Y

λ1 = 1 λ1 = 0



20CCA: canonical correlation vectors

Define two new matrices, consisting of the canonical correlation vectors, 
which maximize the correlation between the canonical variates (new term!).  

   (a  matrix)                        (a  matrix)                                    

a1            a2         a3          a4                                   b1         b2           b3          b4 

A = C−1/2
XX Γ 4 × 4 B = C−1/2

YY Δ 4 × 10

0.125047 -0.161884 -1.09568 0.0837215
-1.03984 0.184989 0.352461 -0.0171176

-0.0133887 -0.223218 0.0551519 1.03603
-0.142058 -1.02403 0.208802 0.122576

0.505018 0.168701 1.41821 2.96834
-0.0883199 -0.106505 -0.210539 0.31741
-0.418723 -0.724131 -1.48629 -2.67865
0.230338 0.735017 -1.05744 0.143887
0.243539 0.850836 1.02523 0.841286

-0.0145254 -0.279299 0.621457 0.353228
0.146178 -0.0218443 0.909085 1.07527
-0.351801 -0.409257 -1.54541 2.77108
0.815247 0.337397 -0.75542 3.21709
0.0422002 0.0389418 -0.288733 -0.234883

anneal. time
anneal. temp

roll. dir.
test dir.

YS
LP1

D
D-1/2



21CCA: the canonical variates

Project the data onto the  and  vectors (to get scores):           

•     

- : (a  matrix) times  (a  matrix):   (a   matrix) 

-  

•  

- : (a  matrix) times  (a  matrix):   (a   matrix) 

-  

 and  correspond to the data projected onto the four eigenvectors of the 
covariance. 

We plot them as pairs of data, i.e.,  for all the data. The first plot generally 
should have the best correlation between the two canonical variates pair.

A B

XA = ATXT

AT 4 × 4 XT 4 × 18 XA 4 × 18
XA1i = 0.125047X1i − 1.03984X2i − 0.0133887X3i − 0.142058X4i

YB = BTYT

BT 4 × 10 YT 10 × 18 YA 4 × 18
YB1i = 0.505018Y1i − 0.0883199Y2i − 0.418723Y3i + … + 0.0422002Y10i

XA YB

{XA1, YB1}



22CCA: the canonical variates

r = 0.999

r = 0.953

r = 0.834

r = 0.971

The eigenvalues of K give r for each plot.



23CCA: the loadings

annealing time

temperature


RD

TD

CV 1            CV2              CV3             CV4

yield stress

…

Vari = ai1CV1 + ai2CV2 + ai3CV3 + ai4CV4 Corrij = Vari ⋅Varj

The loadings are the 
projection of the variables 
onto the canonical 
coefficients (just as in PCA): 

LA = CXXA

LB = CYYB



24CCA in R

Applying the CCA technique is almost as simple as PCA.  One main difference is to 
decide which set of variables (columns) should be regarded as input variables and 
which set as output variables. 

> invars = allvars[,1:4]
> outvars = allvars[,5:12]

Then we apply the CCA itself (NB. you can find options in the yacca page). 

ccares=cca(invars,outvars,standardize.scores=T)



25CCA in R: output

To learn about the results of the analysis, the quickest thing is to do this:  
plot(ccares)

This gives 4 different plots, of which, the first shows that we can get a good fit.
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26CCA in R: circle or “helio” plots

X Variables Y Variables

Anneal_tim
e

Temperature.degrC.

Rollin
g_Di

rectio
n

Te
st
_D
ire
ct
io
n

YS L_
P1

se_
ma
x

e.
s_max.seerReXD

_m
y

Structural Correlations for CV 1

Canonical Variate1

X Variables Y Variables

Anneal_tim
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Temperature.degrC.
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rectio
n
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YS L_
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Structural Correlations for CV 2

Canonical Variate2

X Variables Y Variables
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Structural Correlations for CV 3

Canonical Variate3
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Structural Correlations for CV 4

Canonical Variate4
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Canonical Variate2
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Canonical Variate3
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Explained Variance for CV 4

Canonical Variate4

Most important input variable = Anneal Temp.
Most sensitive output variable = Grain size



27CCA in R: the numbers

Canonical Correlation Analysis

Canonical Correlations:
     CV 1      CV 2      CV 3      CV 4 
0.9962597 0.9700839 0.9236971 0.7996017 

X Coefficients:
                            CV 1         CV 2         CV 3         CV 4
Anneal_time        -0.0006349686 -0.008221356  0.028115903  0.005145620
Temperature.degrC. -0.0093461287  0.001797585 -0.004406831 -0.000999307
Rolling_Direction  -0.0746291915 -0.504465534 -0.427833074  2.204475609
Test_Direction     -0.1248844862 -2.318961588 -0.863723232  0.146430906

Y Coefficients:
                 CV 1        CV 2         CV 3        CV 4
YS        0.028881576  0.01215613  0.009389696  0.16569611
L_P1     -0.140398526 -0.12340927 -0.008045269 -0.02628963
se_max   -0.026242062 -0.01873527 -0.004615684 -0.15381921
e.        0.031916944  0.09428803  0.298802031  0.12324637
s_max.se  0.024755042  0.03107842 -0.013281423  0.13067277
er        0.009540447 -0.01841757 -0.104140854  0.07363285
ReX       0.169052999  0.09136824 -7.559605691 -0.47708781
D_my     -0.236509432 -0.20259176  0.317418586  0.26674964

Structural Correlations (Loadings) - X Vars:
                          CV 1        CV 2         CV 3        CV 4
Anneal_time        -0.45853671 -0.28241766  0.838548257  0.08259038
Temperature.degrC. -0.99832200  0.05343568 -0.002871607 -0.02212593
Rolling_Direction  -0.01373942  0.11708491 -0.145841273  0.98225897
Test_Direction     -0.04519674 -0.93729575 -0.227480651 -0.26016625

Structural Correlations (Loadings) - Y Vars:
               CV 1        CV 2        CV 3         CV 4
YS        0.7224250 -0.52965623  0.23681354 -0.284652405
L_P1      0.1617876  0.20599013 -0.41777901  0.776076784
se_max    0.5606940 -0.26473525  0.37066197 -0.536592353
e.       -0.1923460  0.78878927 -0.01607383  0.525962537
s_max.se -0.4563148  0.65457757  0.22427023 -0.472436524
er       -0.1423697  0.47465970 -0.23168154  0.764658673
ReX      -0.6124121  0.38876123 -0.53960296  0.355374438
D_my     -0.9917832  0.05516687  0.08771473 -0.004104244

Aggregate Redundancy Coefficients (Total Variance Explained):
X | Y: 0.861146 
Y | X: 0.7796086 

You can also type the name of the output dataset, here “ccares”, to get all this output:

This provides some of the numbers that you may wish to have.  Note, e.g., the aggregated Redundancy 
Coefficients (bottom right), as well as the coefficients (LHS) and the loadings (RHS). 



28CCA in R: the first combination, i.e. CV1

Remember that linear combinations of the input and output variables are what we 
get. The Loadings  provide the coefficients.

               CV 1 
YS        0.7224250 
L_P1      0.1617876 
se_max    0.5606940 
e.       -0.1923460 
s_max.se -0.4563148 
er       -0.1423697 
ReX      -0.6124121 
D_my     -0.9917832

                          CV 1 
Anneal_time        -0.45853671 
Temperature.degrC. -0.99832200 
Rolling_Direction  -0.01373942 
Test_Direction     -0.04519674

The 1st block is for the input variables; the 2nd block is for the output variables.   

In decreasing order of importance of the input variables, we have: Annealing temp., Anneal 
time, then Test direction, then Rolling direction.   

The Annealing temperature is dominant – for the CV1 pair (but not for the other 3 CVs).



29

Remember that linear combinations of the input and output variables are what we 
get. The Loadings  provide the coefficients.

For the output variables, we have: 
Grain size, fraction recrystallized, (negative) Yield strength, then (negative) Max. Eng. stress, 
then (negative) hardening etc.   

The magnitudes offer useful clues as to which variables have the most influence (input) and 
which are the most sensitive (output). 

               CV 1 
YS        0.7224250 
L_P1      0.1617876 
se_max    0.5606940 
e.       -0.1923460 
s_max.se -0.4563148 
er       -0.1423697 
ReX      -0.6124121 
D_my     -0.9917832

                          CV 1 
Anneal_time        -0.45853671 
Temperature.degrC. -0.99832200 
Rolling_Direction  -0.01373942 
Test_Direction     -0.04519674

CCA in R: the first combination, i.e. CV1



For additional numbers, values that were calculated, type summary(ccares)

30Summary > Canonical Correlations, Coefficients …

Canonical Correlation Analysis - Summary

Canonical Correlations:

     CV 1      CV 2      CV 3      CV 4 
0.9856295 0.9557033 0.8503614 0.6064473 

Shared Variance on Each Canonical Variate:

     CV 1      CV 2      CV 3      CV 4 
0.9714656 0.9133689 0.7231146 0.3677784 

Bartlett's Chi-Squared Test:

        rho^2    Chisq df    Pr(>X)    
CV 1  0.97147 85.19947 28 1.095e-07 ***
CV 2  0.91337 46.07639 18 0.0002892 ***
CV 3  0.72311 19.16933 10 0.0381639 *  
CV 4  0.36778  5.04367  4 0.2828462    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Canonical Variate Coefficients:

X Vars:
                                 CV 1         CV 2          CV 3          CV 4
Anneal_time               0.009040850 -0.008839731  0.0160612775 -0.0216132554
Anneal_Temperature_degrC -0.009698037  0.004081959 -0.0002298943  0.0004827524
Rolling_Direction         0.211199897  0.456271447 -1.6711080432 -1.5024705383
Test_Direction            0.876743388  2.288704128 -0.0328560195 -0.3907860553

Y Vars:
                                CV 1        CV 2        CV 3        CV 4
Yield_Stress             0.050951361 -0.07140689 -0.21501563  0.31787003
L_P1                    -0.051359196  0.13307434  0.03610953  0.12277281
Eng_Stress_max          -0.042068365  0.06922974  0.20256132 -0.29377099
Strain_at_peak_stress    0.049197647 -0.26235931  0.04351561 -0.10975734
stress_max-s_yield       0.030094283 -0.06659755 -0.19965679  0.32261589
Strain_to_failure        0.004225387  0.05582825 -0.12737839  0.06374365
per_cent_recrystallized -1.124900635  3.61154239 -5.39739964  9.26162832



31… Loadings & Fractional Variance on CVs …

Structural Correlations (Loadings):

X Vars:
                                CV 1        CV 2       CV 3         CV 4
Anneal_time              -0.08887783 -0.08560315  0.6441199 -0.754905508
Anneal_Temperature_degrC -0.87567709  0.28694873  0.2413038 -0.304339509
Rolling_Direction        -0.04869550 -0.09228957 -0.8065009 -0.581951604
Test_Direction            0.36617810  0.88569375  0.2853964  0.003011926

Y Vars:
                                CV 1        CV 2       CV 3        CV 4
Yield_Stress             0.906547517  0.07039372  0.2940504  0.21006405
L_P1                    -0.003648265 -0.05721319 -0.8989282 -0.18498015
Eng_Stress_max           0.653377457 -0.13447373  0.5213911  0.37415434
Strain_at_peak_stress   -0.528216052 -0.58539486 -0.5277438 -0.19428978
stress_max-s_yield      -0.687062911 -0.44278984  0.4067414  0.32232930
Strain_to_failure       -0.362154467 -0.26075605 -0.7559954 -0.36492856
per_cent_recrystallized -0.794671036  0.15426887 -0.5363385 -0.03395401

Fractional Variance Deposition on Canonical Variates:

X Vars:
                                CV 1        CV 2       CV 3         CV 4
Anneal_time              0.007899269 0.007327899 0.41489051 5.698823e-01
Anneal_Temperature_degrC 0.766810358 0.082339573 0.05822753 9.262254e-02
Rolling_Direction        0.002371252 0.008517365 0.65044371 3.386677e-01
Test_Direction           0.134086398 0.784453426 0.08145110 9.071697e-06

Y Vars:
                                CV 1        CV 2       CV 3        CV 4
Yield_Stress            8.218284e-01 0.004955275 0.08646565 0.044126904
L_P1                    1.330984e-05 0.003273349 0.80807197 0.034217655
Eng_Stress_max          4.269021e-01 0.018083183 0.27184866 0.139991472
Strain_at_peak_stress   2.790122e-01 0.342687143 0.27851355 0.037748519
stress_max-s_yield      4.720554e-01 0.196062846 0.16543857 0.103896181
Strain_to_failure       1.311559e-01 0.067993719 0.57152900 0.133172855
per_cent_recrystallized 6.315021e-01 0.023798883 0.28765898 0.001152875



32… Communalities & Redundancies.

Redundancy Coefficients (Fraction of Total Variance
Explained by Each CV, Across Sets):

X | Y:
      CV 1       CV 2       CV 3       CV 4 
0.22129191 0.20154358 0.21784059 0.09205323 

Y | X:
      CV 1       CV 2       CV 3       CV 4 
0.38337769 0.08570719 0.25510722 0.02597074 

Aggregate Redundancy Coefficients (Total Variance
Explained by All CVs, Across Sets):

X | Y: 0.7327293 
Y | X: 0.7501629 

Canonical Communalities (Fraction of Total Variance
Explained for Each Variable, Within Sets):

X Vars:
             Anneal_time Anneal_Temperature_degrC        Rolling_Direction           
Test_Direction 
                       1                        1                        1                        
1 

Y Vars:
           Yield_Stress                    L_P1          Eng_Stress_max   
Strain_at_peak_stress      stress_max-s_yield       Strain_to_failure 
              0.9573762               0.8455763               0.8568254               
0.9379614               0.9374530               0.9038514 
per_cent_recrystallized 
              0.9441128 

Canonical Variate Adequacies (Fraction of Total Variance
Explained by Each CV, Within Sets):

X Vars:
     CV 1      CV 2      CV 3      CV 4 
0.2277918 0.2206596 0.3012532 0.2502954 

Y Vars:
      CV 1       CV 2       CV 3       CV 4 
0.39463848 0.09383634 0.35278948 0.07061521 

The redundancy coefficients (RHS) are 
used to make the CCA screeplots.  In this 
case, at least, they are very similar to the 

Canonical Variate Adequacies (LHS)



CCA is mathematically elegant but difficult to interpret because solutions are not unique.  

A variate is interpreted by considering the pattern of variables that are highly correlated 
(loaded) with it. Variables in one set of the solution can be very sensitive to the identity 
of the variables in the other set; solutions are based upon correlation within and between 
sets, so a change in a variable in one set will likely alter the composition of the other set. 

There is no implication of causation in solutions. The pairings of canonical variates 
must be independent of all other pairs.  

Only linear relationships are appropriate.  
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http://userwww.sfsu.edu/efc/classes/biol710/pca/CCandPCA2.htm



For a very straightforward, visual way 
to visualize correlations and cross-
correlations, one can use matcor. The 
top right and bottom left quadrants 
are mirror images and show the cross-
correlation between input & output. 

34R: matcor

> simpleCorr=matcor(invars,\  
     outvars)
> img.matcor(simpleCorr)

XY correlation

-1.0 -0.5 0.0 0.5 1.0

Grain size

Max. Eng. Stress

Yield Strength

TimeTemperature

You can also try using ggcorrplot



Here we show the 2nd type of 
img.matcor plot, which separates 
out the input and output 
variables, and shows the cross-
correlation separately.
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X correlation Y correlation

Cross-correlation

-1.0 -0.5 0.0 0.5 1.0

> simpleCorr=matcor(invars, outvars)
> img.matcor(simpleCorr, type=2)

R: matcor



needs the “car” package 

… illustrates why a general 
correlation plot is confusing!

36R: scatterplotMatrix
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There are two main packages for performing CCA:

One is in the CCA package and the procedure is called “cc”.

The other, illustrated in some detail here, is from the yacca package and the 
procedure is called “cca”.  

All of which is somewhat confusing … but we recommend using “cca” from 
the yacca package because reading its output is more straightforward. For 
example all of the major items of interest such as coefficients, loadings, 
commonalities, and redundancies are easily found from using cca.

37CCA package versus yacca package


