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The eigensystem equation is Cv = Av .

Note that letting v — — v does not change the equation — A remains the
same.

The signs of the eigenvectors can be different depending on what software
was used to calculate them.

The basic features of the scores and loading plots (discussed soon) will be
the same, but the signs of the plots may be different.

Note: solving the eigensystem equation for the covariance matrix is also
known as spectral decomposition.

Eigenvalues and eigenvectors: example



atomic melting # Ain electro- lattice atomic melting # Ain electro- lattice

number pt.(C) valence radii negativity const number pt. (C) valence radii negativity const

Reca p: = A - )
AIN 10 498 4 1088 421 | &di @ZnMglosS 185 | 598 65 |078| -1.21 5.52

A common type Of AlP 14 625 4 0435 068 | 547 (SSeosMg | 185 682 4 [-093 134 | 581
AlAs 23 1012 4 026 063 @ 566 (SSelosZ 275 | 567 ® O’ 92 5.52

d ataset: 44 Asb 32 919 4 009 -05 | 614 BN @nMglsSe 275 @ 651 65 (0595 1.1 | 578
GaN 19 183 4 149% 145 @ 346 (@nCd)osSe 365 569 ® @55 i 5.86

sem | con d u C'to r GaP 23 310 4 0455 062 | 545 (SeTelosZn 365 | 650 9 L0595 1.1 5.9
GaAs 32 545 2.5 |028| -057 | 565 (SeTelosCd 455 | 601 9 -093 1.4 6.28

com po un d S an d 6 GaSb 41 603 4 QW D4 6 @nCd)osTe 455 683 9 021 094 | 627
InN 28 246 4 151 122 | 3.54 (AlGa)os P 185 467 4 0435 068 @ 546

descri p-to rs. InP 32 373 4 | 081| 069 | 587 (PAslos Ga | 275 503 4 0455 0.2 5.61
InAs 41 760 4 0635 064 @ 606 (AlGa)os As | 27.5 854 4 @26 068 | 565

InSb 50 667 4 0285 -051 @ 648 (Galn)os P 27.5 341 4 |0.455 -0.62 | 5.68

We h ave seen Wh at ZnS 23 540 9 ol 121 | 54 (Aln)os P 23 499 4 0435 068 | 5.69
_ ZnSe 32 593 9 0595 -1.1 5.67 (AlG)osznAs  27.5 | 965 4 -026  0.63 5.88

reg ression can d O 1o ZnTe 41 707 9 021 094 6.1 (AIZnjos As  27.25 | 951 625 026 063 | 587
CdSe 4 544 9 093 -1.14 | 605 (AsSb)os Ga 365 = 650 4 |-0.28 057 5.85

h e | p un d erstan d i h e Cdle = 50 658 9 0454 098 648 || (AlGalosSb 365 761 4 |009 05 | 611
MgS 14 655 4 088 <G4 | 87 (Galn)osSb 365 | 728 4 |028| 057 | 582

d ata. MgSe 23 708 4 0745 -123 | 59 (PAslosIn 365 566 4 |-081| 069 | 59
(AlGa)os N 14.5 340 4 1088 121 | 814 (Alln)psSb | 41 793 4 |-009| 05 6.27

(AlnpsN 19 372 4 1088 121 | aem (Galn)osSb = 455 | 635 4  -007 044 | 626

(Galnjos N 23.5 214 4 1155 -1.15 | 3.31 (AsAblosIn | 455 = 713 4 0635 0.64 6.24

dataset-semiconductors-from-KrishnaRajan-talk-on-PCA-RALeSar.x1sx

Semiconductor compounds: Courtney of Krishna Rajan 3




Recap: to put all variables on the same scale and to eliminate issues with the different
units in each data type, we autoscale the data:

X. —X
= e i , for each data entry with i = the type of data (e.g., atomic number).

O;

e The vector of values of X, will be called X} and we have: X'=0and oy, = 1

e Create the data matrix as: Ay, = [Xi X; X5 X; Xj Xg] in which each X' is
a 44 component column vector of the autoscaled data type X'.

e Autoscaling ensures that the variances are weighted the same for each data type
and avoids complications of having various units.

Autoscaling the data



Recap: calculate the covariance matrix (measure of the variance between variables)

X=X o
for the autoscaled data X}; = with X/ = 0 and oy, = 1
O; :
[ L il (in —Z> (ij —Y])
Ci=—— ) XiXi = >
Iy - ki“*kj B .
W= 1 W= o ol
-\ 2
C.. = 1 i 7o 1 i(xki_Xi) _Sz_l
“ N-1&"% N-1&5 o2 S

C is a measure of the correlation between the variables.



Recap: while we could sum the data as shown on the previous slide, it is actually
easier to use what we've learned about matrices:

Since Ay = [Xi X5 X5 X; Xj§ Xg] we can calculate C as
AjAy
N-1

o=

A is has dimensions of p X N and Aj, has dimensions of N X p. The product has

dimensions of p X p.
-I -Le




Recap: we now find the eigenvectors and eigenvalues of the covariance matrix C:
the principal components, which create an orthogonal basis.

From the covariance matrix given above, we find:

3.06229
1L Zagessie
— | 0.870424
0.586331
0.220362
0.0416367

0.393417
-0.38676
-0.170358
0.506673
0.411283

-0.391968
-0.0474299
-0.644791
-0.351709

0.508746
-0.214087

-0.0774367
0.654928
-0.527402
0.203926
-0.407694
0.281282

The eigenvectors are orthonormal: P'P =1

0.706188
-0.451536
-0.525786
0.0689972
-0.0727362
0.104463

-0.431937
-0.457014
-0.0246437
-0.0348986
-0.107181
0.768931

p
Note: the sum of the eigenvalues = the number of data types: Z =D
i=1

PCA on the full dataset

-0.0178061
-0.0805578
-0.00331295
-0.756319
-0.623724
-0.179255




Cumulative fractional variance measures how much variance is included as new PCs are included

in the description of the data:

k
A= 2/1{ = (0.510381, 0.713541, 0.858612, 0.956334, 0.993061 1.)

=il

71 % of the variance is contained in the first 2 principal components and 86 % in the first three
principal components.

We can develop reduced dimensional representations of the data using only the first few
principal components (PC).

The aim of PCA is find linear combinations of the variables that explain a large fraction of
the data, preferably only two [principal components]!

Cumulative fractional variance




The scores, T, are found by projecting the original autoscaled data, A, onto the
eigenvectors, P, since they form an orthonormal system.

T = A,P

Note: Ay is (44x6) dimensional matrix, while P is a (6x6) matrix: the product is the
(44x6) matrix of the principal components.

For example, the first two PCs (i.e., the 1st two columns in P) provides these scores:

at.no. MeltT # val. e A radii elecneg latcon
PC1; = —0.393417X] ; — 0.38676X; ; — 0.170358X; ; + 0.506673X} ; — 0.411283X5 ; — 0.49066X ,

PC2; = - 0.391968X] ; — 0.0474299X; ; — 0.644791X; ; — 0.351709X, ; + 0.508746X ;, — 0.214087 Xy ,

Coordinates of data point i on the scores plot are (PC1,, PC2))

. Scores




The scores depend on the
principal components.

The PCs form a basis into
which we can plot the scores.

For example, the first two
PCs yields 71 % of the overall
variance.

We can understand the data
by looking at a (2D) plot of
the scores for a pair of the
PCs.

Scores

PC1

3.38605
0.902668
-0.478575
-1.23421
3.641
1.19379
0.229129
-0.932761
3.31008
0.842192
-0.53905
-1.26369
0.939099
0.150621
-1.03943
0.0129525
-1.25198
1.48393
0.726455
3.51876
3.19368
3.33143
1.13312
-1.75831
-1.91722
0.344642
-0.0667437
-2.40678
-3.13857

R€7

. 765178
.803237
.462851
.327974
.524342
.578183
. 722097
.107428
-0.161519
-0.116696
-0.457082
-0.578433
-1.54346
=1L, 77213
-1.90686
-2.39906
-2.48178
0.0246309
-0.190532
0.629499
0.413367
0.314974
-0.665683
2.66097
0.749513
-0.894373
-1.9767
0.129375
-0.0618932
-2.10689

0
0
0
0
(0]
(0]
0
0

PC3

0.0444564
0.632804
1.85174
1.42677
-1.10432
-0.536705
0.539643
0.251338
-0.687566
-0.108104
1.11083
0.66809
-0.570113
-0.498859
-0.262708
-0.486929
-0.280917
1.31671
1.3702
-0.515858
-0.387786
-0.985133
0.303634
-0.6306
-2.28023
0.374888
-0.558973
-1.83061
-2.083
-0.328746

PC4

-0.923304
-0.821175
—1.12572
-0.302138
0.422339
0.516768
0.933548
1.0336
0.966179
1.06501
0.760466
1.57744
-1.15694
-0.679241
-0.352891
0.123092
0.439244
-0.748265
-0.277163
-0.248215
-0.00059617
0.666658
-0.971007
-0.957956
-1.30843
-0.493304
-0.298736
-0.826709
-0.107022
0.0254132

RES

-0.802435
0.60889
-0.520492
-0.279255
-0.392991
0.961652
0.215606
0.0573127
-0.615917
0.771116
-0.358265
-0.165613
0.389241
0.0995653
-0.192736
0.14036
-0.146783
0.78792
0.44966
-0.588917
-0.703294
-0.531661
0.555431
0.361215
-0.0182307
0.265756
0.126669
-0.273371
-0.205751

PCé6

0.0866611
0.0112951
-0.0269538
0.230554
0.120627
0.0584743
0.0837623
0.281508
-0.372175
-0.441878
-0.480127
-0.211293
0.0412944
0.0928495
0.291933
-0.352693
-0.0418305
-0.117394
-0.0545128
0.139315
0.0844462
0.0714207
0.00796419
-0.0457656
-0.0447058
0.0595193
0.0596045
-0.304606
0.00795682
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The loadings are just the
location of six eigenvectors on
PC1 and PC2.

Litno. = {PII’PIZ}
Lmeltingpt = {P 21> P 22}

etc.

loadings on PC2
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high values of valence elections
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Paraphrasing from Jobson:
A biplot is used to provide a 2D representation for a data matrix, A or X. We

limit it to 2D for convenience. We assume that an SVD is available (but check
the screeplot) and that two PCs are enough.

Start with the first 2 PCs, which provide the (orthogonal) axes. Plot the PC
scores on the graph as points. Add the loadings of the two PCs as rays
(arrows), which are the values in each eigenvector (for each variable).

To obtain plots with other PCs, add the argument “choices”, as in:
biplot(PCkr, choices = 3:4, scale = 1)

15)



Example of a biplot
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Applications of principal component analysis: (Rajan, DOI:10.1002/sam.10031)
* identify the strongest patterns in the data
* capture most of the variability of the data with a small fraction of the total
set of dimensions
e eliminate most of the noise in the data, making it better for data mining
and other data analysis algorithms

PCA can be used to determine the relationships among a group of variables in
situations where it is not appropriate to make a priori grouping decisions, i.e., the
data is not split into groups of dependent and independent variables.

It allows us to reduce the number of variables needed to represent the data by
describing the data in terms of linear combinations of all the types of data.

18



“Average Criterion”
We know that the total variation is given by the sum of the eigenvalues (thinking of a

solution based on the covariance matrix). The average value Ais easily calculated. A
simple criterion is to keep all the principal components that exceed the average, 4; > A.

In the case of PCA on the correlation matrix, the sum is the number of variables,

p
2 A; = p, so A = 1. For this (common) situation, the “Average Criterion” becomes the
J=1
eigenvalue-one-criterion. The latter is also used in factor analysis (not discussed in this

course). Note that solving the problem with unscaled versus scaled values will generally
result in a different number of components being retained.

In the case of the semiconductor analysis, we would keep only the 1st two PCs for a
total of 71 % explained of the variance in the data, which is quite good.

————

Criterion for how many PCs to keep based on A 19




In some cases, the last few PCs are associated with very small fractions of
the variance. It may be possible to eliminate a variable, which decreases the
total PC count. If a variable is eliminated without affecting the variance
explained by the (already decided upon) retained PCs, then it can be
sacrificed.

Note however that this is a complicated topic and somewhat controversial.
PCA is intended to help you understand your entire dataset and its structure.
It is not intended as a technique for regression analysis.

The next 2 slides have excerpts from Jobson ...

————

i z ’l [] [] [ "
Eliminating variables

20



me 8 Prisvipal Components. Facton and Correspondence Asalysn

LPOP (0.57). Thes #6% of the variation ia PMEAN s explained by
first foee components, whereas for NONPOOR this percemtage = 77.

How Mosg Frincipal Components ¥

Recall 1hat cme of the objectives is principed components analyss wis wigeavaluss is M7 and bence the first five compoaents
repince the wt of p origmal variablos with & small sobeet of r These Sve factors joinely account for 98.7% of the variation. AL cumpanents
components. The sssumpeion was that becsase of the covariance oormpoading 1o Lhe later elgrmvaloms are igaored

ships among the variables a senall walue of » would uvoally be sufficient
retnin mest of the weintion. The sum of squared deviations between
originy matrix X and the sstimated values baserd on the first ¢
et s given by tr X X - T A = 3072 and besce the
of the total vum of squases scoousted for by the fing r components s
by 3200 A 10000 A Some cut-off proportica, therefore, can be nsed
determine the pumber of components 10 retain.

A Test for Eguobity of Esgenvadues in Covarvance Matrioes

Sisce the eigemvalom docine In & goometric fashice, it cas often be arpund
thaat thee last (p—7) sigrovabaes are peimarily due 10 *nobse”. [= such cases it
i of interest %0 test the null Bypothess that the Jast (p - 1) clgmvados we
squal. Under the asessption thas the X obwervtions have boon samphed
frvens & muktiveriate normal distribution, the test statatic is given by

Averege Criterion

Since the total varintion is given by 377, A, where A, is the variance
Z;, a possible rule of thumd & 10 retain those components whose

exoonds the sverage A = 377 A /p. In other words, reeain 2, A > A
cocrelation matrices, 377, A, = » axd hence A = 1. This eriterica
1he cigenvaluc-one-crileron, which s commonly used in factor annlysis
will be discossed in Section 92

Fremple

For the SSCP matrix X'X of the example, the average cigeovalue
requires that eigeavaleos above 833,79 be retained, and bence caly the
first component reprosenting 9% of the varisacn would be motained. For
the covariance matrix the criteron sagpeets thas elgeavaloss above 4084
correspond o factors that should be retalned. Thes the et three com-
ponents representing 95% of the variance sbould be retained. For the cor-
relstion matriz the sigesvaluscas-criterion sagaests the retention of fosr
components. The fost four components account for 56% of the wwistion
for the correlation matrix

v
h_(z,.m.fq[(p-r)hx, co 3wy
Jarel
.h!!.\,.)-l.&v...’m!hemdlbm-.nﬂx-d
where by, = 3701 Ag/(p7). M the mall iypothesis is true, this statistic
Bas o i detribation with §(p-r+2)(p-r=1) degzes of freedom. A special
e of Uhis hypochess was discussed as o tost of splasicity in Chagter 7
Later in this chapter, i factor szalysis, the scree test will also be concerned
with the equality of the latter egeavaiues of the correlation matrix.

A Crow Validation Approsch

thMmmMthngWnub
mAMwmhm-MﬁunﬂMcMu
oo of the groupe. The principal components solution is used to pradict Lie
oteervations in the omitted group. The goodnes of Bt s evalusted using

Tyir) = =X 1) - XWX - X0,

M:Mthmw.mmﬂmrdmmd
components each group s omitted ance and is predictad by the remaining
group. The total messure of error T(r) = 325, 7j(r) over the g groupe
Setezmined As the number of peincipal compooents = increases, the toeal
error T(r) decreases When the relative change @ total erroe s measured
by 10r) = Tir = 1)/T(r = 1) Is conmdered small it i 20t Devesay Lo add
addition auupotetns.

Wmmw to cross validation based on the Heelibood function
will be itroduced o the section on factoe analysis.

Geometrae Mean Onigerson

An altemative criterion based on the cigrmvalom s (2o generalised wark.
ance. Since [X°X] = TF_ 2, we hawe that [X'X|V% = [T A,)% « the
grometrc meaa, A, of the dgemvalues. The arerage generoalisad sarance
5 given by the goometsic mean of the cigenvadom, A, and besce the o
tricn retais Z, if A, > A Recall that the grometric mean & usefel for
avweaging a set of sumbens containing » few extremes.




Next week we will examine Canonical Correlation Analysis (CCA)



We start with a data set based on 2337 grains from an unnamed superalloy, for which
we have measured (or constructed) data consisting of 11 variables for each grain:

{b/a’ C/a’ a, b’ Cy Xes Yoo Lo Deq.’ NNeighbors’ Q3}
e the position of each grain is {xc, Ves zc}
o the size of each grain is described by {a, b, c, Deq.,NNeigth,,s}
* the shape of each grain is captured by {b/a, cla, 93}

How can we best understand this data?

e Can we use principal component analysis to reduce the dimensionality of the data,
without (we hope) losing too much information?

Data from M. Groeber, AFRL from a DREAM3D data file.

Example 2: grain data (from the USAF Materials Lab) 23



The scatterplot matrix
shows correlations in data
as expected: as a
increases, so do

{b’ C, Deq.’ Nneighbors}
The positions {x,, v, z.}

fill space.

It is difficult from these
plots to see any surprising
correlations in the data.

Example 2:

B/IA

CIA

Xc

Yc

Zc

Eq. Diameter

No. Neighbors

Omegad

0.2 04 0.6 0.8 10 20 30 40

RS e

) 3 gt
Jii: i Caat

. ‘!_- by !.. !I!l

et S

.

oY

;
AR

o ,.‘;.ii.u:l <

il

0.2 0.

£

. . | . Ll 1% | Se | . Ll 1
40608 1 10

BIA

=TT
20 30 40 4 6 8
Yo Eq. Diameter

No. Neighbors

L. T T
0204 06 08 1
Omega3d




Steps:
® autoscale the data

e calculate the covariance matrix C

b/a c/a a b C X y Z D N Q3

b/a 1. ~0.0297718 0.374626 0.349329 -0.0132041 0.0120379 -0.0481651 0.27888 0.260689 0,356439
c/al 0.615334 T ~0.009316  0.244918 -0.028992 0.0349535 -0.0754699  0.364311 0.34937
a | -0.0297718 -0.009316 i T735I79] 0.0112308 -0.0789474 0.0182463 0.903379 : 0.232272
b 0.374626  0.244918  0.895273 ; 0.842408) 0.00198956 -0.0653764 -0.00400199 | 0.96082 . 0.371346
fo 0.349329 0.61172 0.735179 0.842408 1. ~0.0123373 -0.032131 -0.0326387
X | -0.0132041 -0.028992 0.0112308 0.00198956 -0.0123373 1 ~0.074451 -0.0345575 K B opyonr:oyist
y 0.0120379 0.0349535 -0.0789474 -0.0653764 -0.032131 -0.074451 1 0.0498874 -0.0576587 0.0103652 -0.0231603
7 | -0.0481651 -0.0754699 0.0182463 -0.00400199 -0.0326387 -0.0345575 0.0498874 1. ~0.0124335 -0.00868138 0.0144447
D 0.27888 0.364311  0.903379 0.96082 0.941835 -0.00269399 -0.0576587 -0.0124335 i 0.903106 0.441562
N 0.260689 0.34937 0.802318 0.861533 0.865294 0.00411898 0.0103652 -0.00868138 0.903106 1. 0.38124
Q| 0.356439  0.547882  0.232272 0.371346 0.509272 -0.0185865 -0.0231603 0.0144447 0.441562 0.38124 1.

Example 2: Create the correlation function




Choose:

o 3 measures of size {c, Nieighvors» Deq.}

e 3 measures of shape {b/a, cla, 93}

b/a c/a C D N Q3
b/a i 0.615334 0.349329 0.27888 0.260689 0.356439
c/al| ©.615334 10 0.61172 0.364311 0.34937 0.547882
C 0.349329 0.61172 1l 0.941835 0.865294 0.509272
D 0.27888 0.364311 0.941835 1k 5 0.903106 0.441562
N 0.260689 0.34937 0.865294 0.903106 [ 0.38124
(23 0.356439 0.547882 0.509272 0.441562 0.38124 1.

The first 2 PCs capture 82% of the variance.
The first 3 PCs capture 92% of the variance.

Example 2: Reduced set of variables: size and shape 26




82% of the variance
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| do not see any separation of the variables in the scores.

Example 2: Reduced set of variables: size and shape

27



PC3

92% of the variance
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Example 2: Reduced set of variables: size and shape
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Steps:
® autoscale the data

e calculate the covariance matrix C

b/a c/a a b C X y Z D N Q3

b/a 1. ~0.0297718 0.374626 0.349329 -0.0132041 0.0120379 -0.0481651 0.27888 0.260689 0,356439
c/al 0.615334 T ~0.009316  0.244918 -0.028992 0.0349535 -0.0754699  0.364311 0.34937
a | -0.0297718 -0.009316 i T735I79] 0.0112308 -0.0789474 0.0182463 0.903379 0.802318 0.232272
b 0.374626  0.244918  0.895273 ; 0.842408) 0.00198956 -0.0653764 -0.00400199 | 0.96082 0.861533 0.371346
C 0.349329 0.61172 0.735179 0.842408 1. ~0.0123373 -0.032131 -0.0326387 - .
X | -0.0132041 -0.028992 0.0112308 0.00198956 -0.0123373 1 —0.074451 -0.0345575 -0.002609399 0.00411898 -V .OTS5805
y 0.0120379 0.0349535 -0.0789474 -0.0653764 -0.032131 -0.074451 1 0.0498874 -0.0576587 0.0103652 -0.0231603
7 | -0.0481651 -0.0754699 0.0182463 -0.00400199 -0.0326387 -0.0345575 0.0498874 1. ~0.0124335 -0.00868138 0.0144447
D 0.27888 0.364311  0.903379 0.96082 0.941835 -0.00269399 -0.0576587 -0.0124335 i 0.903106 0.441562
N 0.260689 0.34937 0.802318 0.861533 0.865294 0.00411898 0.0103652 -0.00868138 0.903106 1. 0.38124
Q| 0.356439  0.547882  0.232272 0.371346 0.509272 -0.0185865 -0.0231603 0.0144447 0.441562 0.38124 1.

The first 2 PCs capture 61% of the variance.
The first 3 PCs capture 71% of the variance.

All 11 functions: the covariance matrix




61% of the variance
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Example 2: the full set of 11 variables
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71% of the variance
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Example 2: the full set of 11 variables
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"However, care must be taken to judiciously apply PCA. Authors will readily
acknowledge PCs are not necessarily simple to interpret physically especially with
image data (Belianinov et al., 2015a). PCA is not guaranteed to separate clusters of
data from one another (Ringnér, 2008), and overzealous projection onto PCs can
actually make classes of data inseparable that were previously separable before

PCA."

— Wagner and Rondinelli, Frontiers in Materials, https://www.frontiersin.org/
articles/10.3389/fmats.2016.00028/1ull

Limitations of PCA 32
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Not all methods will be useful for all datasets.



