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http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/
118-principal-component-analysis-in-r-prcomp-vs-princomp/

packages: FactoMineR, factoextra, ggplot2, scatterplot3d, yacca, car, CC, cca 

https://www.rdocumentation.org/packages/factoextra/versions/1.0.7

https://www.benjaminbell.co.uk/2018/02/principal-components-analysis-pca-in-r.html
https://www.benjaminbell.co.uk/2018/03/principal-components-analysis-pca-in-r-part-2.html

Chapter 9 in Jobson, Vol. 2.

Hastie et al. only refer to PCA in passing …

2Resources for PCA



3Semiconductor compounds: Courtney of Krishna Rajan
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AlN 10 498 4 1.135 -1.21 3.11 (ZnMg)0.5 S 18.5 598 6.5 0.78 -1.21 5.52

AlP 14 625 4 0.435 -0.68 5.47 (SSe)0.5 Mg 18.5 682 4 -0.93 1.34 5.81

AlAs 23 1012 4 0.26 -0.63 5.66 (SSe)0.5 Z 27.5 567 9 -0.78 1.21 5.52

AlSb 32 919 4 -0.09 -0.5 6.14 (ZnMg)0.5 Se 27.5 651 6.5 0.595 -1.1 5.78

GaN 19 183 4 1.155 -1.15 3.16 (ZnCd)0.5 Se 36.5 569 9 0.595 -1.1 5.86

GaP 23 310 4 0.455 -0.62 5.45 (SeTe)0.5 Zn 36.5 650 9 -0.595 1.1 5.9

GaAs 32 545 2.5 0.28 -0.57 5.65 (SeTe)0.5 Cd 45.5 601 9 -0.93 1.14 6.28

GaSb 41 603 4 -0.07 -0.44 6.1 (ZnCd)0.5 Te 45.5 683 9 0.21 -0.94 6.27

InN 28 246 4 1.51 -1.22 3.54 (AlGa)0.5 P 18.5 467 4 0.435 -0.68 5.46

InP 32 373 4 0.81 -0.69 5.87 (PAs)0.5 Ga 27.5 503 4 -0.455 0.62 5.61

InAs 41 760 4 0.635 -0.64 6.06 (AlGa)0.5 As 27.5 854 4 0.26 -0.63 5.65

InSb 50 667 4 0.285 -0.51 6.48 (GaIn)0.5 P 27.5 341 4 0.455 -0.62 5.68

ZnS 23 540 9 0.78 -1.21 5.41 (AIn)0.5 P 23 499 4 0.435 -0.68 5.69

ZnSe 32 593 9 0.595 -1.1 5.67 (AlG)0.5ZnAs 27.5 965 4 -0.26 0.63 5.88

ZnTe 41 707 9 0.21 -0.94 6.1 (AlZn)0.5 As 27.25 951 6.25 0.26 -0.63 5.87

CdSe 41 544 9 0.93 -1.14 6.05 (AsSb)0.5 Ga 36.5 650 4 -0.28 0.57 5.85

CdTe 50 658 9 0.454 -0.98 6.48 (AlGa)0.5 Sb 36.5 761 4 -0.09 -0.5 6.11

MgS 14 655 4 0.93 -1.34 5.7 (GaIn)0.5 Sb 36.5 728 4 0.28 -0.57 5.82

MgSe 23 708 4 0.745 -1.23 5.9 (PAs)0.5 In 36.5 566 4 -0.81 0.69 5.94

(AlGa)0.5 N 14.5 340 4 1.135 -1.21 3.14 (AlIn)0.5 Sb 41 793 4 -0.09 -0.5 6.27

(AlIn)0.5 N 19 372 4 1.135 -1.21 3.32 (GaIn)0.5 Sb 45.5 635 4 -0.07 -0.44 6.26

(GaIn)0.5 N 23.5 214 4 1.155 -1.15 3.31 (AsAb)0.5 In 45.5 713 4 -0.635 0.64 6.24

A common type of 
dataset: 44 
semiconductor 
compounds and 6 
descriptors. 

We have seen what 
regression can do to 
help understand the 
data. 

What other tools do we 
have?

dataset-semiconductors-from-KrishnaRajan-talk-on-PCA-RALeSar.xlsx



4Scatterplot matrix
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• no information about 
multidimensional correlations



5Triples of variables
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3D plots are even less useful



6The need for dimensional reduction

2D and 3D plots describe the data, but do not tell us much about the 6-
dimensional data 

• we can try to reduce the dimensionality of the data to make it more 
accessible for analysis 

- the goal will be to reduce the dimensionality without losing the 
content of all the data 

• we focus today on principal component analysis 

• For those who are familiar with eigenanalysis, we apply this very 
standard numerical analysis to the covariance (correlation) matrix to 
rotate and diagonalize it.  Read up on the method on Wikipedia: 
Eigenvalues and eigenvectors



In PCA, we find a reduced-dimension representation of the data that maximizes the 
variance of the data. 

In this simple picture, (c) provides more more of the variance, and thus more information 
about the data, information than (b).  In effect, we project the data shown in (a) in two 
different directions to get (b) and (c).  PCA is, however, more complex than just projection.

7Reducing dimensions: Principal Component Analysis

(a) (b) (c)



8Statistics relative to a sample mean x

mean:   

bias-corrected variance:   

bias-corrected standard deviation:   

bias-corrected covariance:     

x =
1
N

N

∑
n=1

xi

Sx =
1

N − 1

N

∑
n=1

(xi − x)2

σx = Sx

Cij =
1

N − 1

N

∑
n=1

(xin − xi) (xjn − xj)
Here, the means have 

been subtracted but the 
range of each variable can 
be very different, i.e., the 

variance can differ 
between each variable 

(which may be a problem).



9Procedure

Our focus will be on maximizing the total variance of the data captured in a 
reduced dimensional representation.  

We need not only the variance of individual types of data, but also whatever 
correlations exist between data types, do the data types track with each 
other. 

However, we need to rescale the data so we can capture those correlations 
accurately — the correlation matrix we described in Lecture 5. 

We will build our (eigenanalysis) solution on the principal components of 
either the covariance (means subtracted) or the correlation (means 
subtracted and normalized by variance) matrix.



To put all variables on the same scale and to eliminate issues with the different units 
in each data type, we autoscale the data:   

  ,  for each data entry with  = the type of data (e.g., atomic number). 

• The vector of values of  will be called  and we have:   and  

• Create the data matrix as:   in which each  is 
a 44 component column vector of the autoscaled data type . 

• Autoscaling ensures that the variances are weighted the same for each data type 
and avoids complications of having various units.

X′�ki =
Xki − Xi

σi
i

X′�ki X′�i X′� = 0 σX′�i
= 1

AN = [X′�1 X′�2 X′�3 X′ �4 X′�5 X′�6] X′�i
X′�i

10Autoscaling the data



11Autoscaled data

Autoscaling ensures that the variances are weighted the same for each data type  
and are unitless.

atomic number              melting temperature         # valence electrons 

AN =
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Calculate the correlation matrix (measure of the variance between variables) for the autoscaled data 

 with  and  

 

 

C is a measure of the correlation between the variables. We can also construct a similar covariance 
matrix that omits the normalization by variance (next slide). In general, the values in the the various 
columns/rows of a correlation matrix look rather similar to each other because of the scaling.

X′�ki =
Xki − Xi

σi
X′�i = 0 σX′�i

= 1

Cij =
1

N − 1

N

∑
k=1

X′�kiX′�kj =
1

N − 1

N

∑
k=1

(Xki − Xi) (Xkj − Xj)
σiσj

Cii =
1

N − 1

N

∑
k=1

X′ �2
ki =

1
N − 1

N

∑
k=1

(Xki − Xi)2

σ2
i

=
Si

Si
= 1

12Correlation matrix



Calculate the covariance matrix (measure of the variance between variables) for the 
autoscaled data  with . 

 

C is a measure of the covariance between the variables. In fact, we already showed 
this formula a few slides back so this is a reminder! In general, the values in the the 
various columns/rows of a covariance matrix do not resemble each other because of 
the different scales of each variable.

X′�ki = Xki − Xi X′�i = 0

Cij =
1

N − 1

N

∑
k=1

X′�kiX′�kj =
1

N − 1

N

∑
k=1

(Xki − Xi) (Xkj − Xj)

13Covariance matrix



While we could sum the data as shown on the previous slide, it is actually easier to 
use what we’ve learned about matrices:  

Since , we can calculate  as 

             

 is has dimensions of   and   has dimensions of  N X p. The product has 
dimensions of p X p.  

AN = [X′�1 X′ �2 X′�3 X′�4 X′ �5 X′�6] C

C =
AT

NAN

N − 1

AN p × N AT
N

14Covariance matrix

ANT ANx = C



The covariance matrix for this dataset is: 

Note that since  is symmetric and has a unit values along the diagonal:  

• the eigenvectors of  are orthogonal and normalized (unit vectors) 

• the  are the correlations between data types  and 

C

C

Cij i j

15Covariance matrix 

at.no.                MeltT                # val. e-              Δ radii          elecneg          latcon

at.no. 
MeltT 
# val. e- 

Δ radii 
elecneg 
latcon

1. 0.301065 0.333507 -0.423666 0.260447 0.644653
0.301065 1. 0.0800864 -0.475718 0.257429 0.649356
0.333507 0.0800864 1. -0.102481 0.0249477 0.258756
-0.423666 -0.475718 -0.102481 1. -0.91109 -0.615628
0.260447 0.257429 0.0249477 -0.91109 1. 0.367428
0.644653 0.649356 0.258756 -0.615628 0.367428 1.



To proceed, we will use Principal Component Analysis (PCA), e.g., in mechanical engineering it is 
called Proper Orthogonal Decomposition. It uses eigenanalysis, which is a well-known tool in many 
other names in other fields and is sometimes referred to as spectral decomposition. 

PCA is an orthogonal linear transformation that transforms the data to a new basis such that the 
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the 
first principal component), the second greatest variance on the second coordinate, and so on.[9] 

In essence, PCA fits a p-dimensional ellipsoid to the data, in which each axis is a principal component 
of the covariance matrix  and whose length is proportional to the variance of the data in that 
direction.  

The principal components (PCs) are the eigenvectors of  (which are unit vectors because  is an 
orthonormal symmetric matrix) multiplied by the associated eigenvalue.  The eigenvalues of  are the 
variances associated each PC. 

Most often, we operate on the (auto-scaled) correlation matrix as opposed to the covariance matrix 
(but the latter is possible: just be careful about numerical issues).

C

C C
C

16Principal component analysis



As an example, consider the correlation matrix between two of the data 
types: “melting temperature" ( ) and “difference in radii” ( ). 

The variation in the individual datasets can be seen in the histograms: 

X′�2 X′�4

17Eigenvalues and eigenvectors: example
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The correlation between the data types is apparent in a plot of  (difference 
in radii) versus  (melting temperature) 

X′�4
X′�2

18Eigenvalues and eigenvectors: example
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There is a clear relationship between 
these datatypes, with a general 
trend along a line with a slope of -1 
through the origin. 

From the correlation matrix, we can 
read off the covariance between 
these two variables as 

.C24 = − 0.475718



The net correlation matrix for these two data types (i.e., just this pair of variables, 
to make it a 2D example) thus looks like 

 

The eigensystem equation is   , which we start by rearranging to get 
 and then solve using  

 

 

C′� = [ 1 C24

C24 1 ]
C′�v = λv

(C′� − λI) v = 0

det (C′� − λI) = 0

1 − λ C24

C24 1 − λ
= (1 − λ)2 − C2

24 = 0

⇒ λ1 = 1 − C24 and λ2 = 1 + C24

19Eigenvalues and eigenvectors: example

C24 = − 0.475718



Inserting the values for  into  and solving for the components of , 
we find: 

  with  

  with 

λ C′�v = λv v

λ1 = 1.47572 v̂1 =
−

2
2

2
2

λ2 = 0.524282 v̂2 =
−

2
2

−
2

2

20Eigenvalues and eigenvectors: example

Note that  

The eigenvectors form an 
orthonormal basis.

v1 ⋅ v2 = 0



The vectors   lie along the eigenvectors and have the magnitude of 
the eigenvalues. 

Adding them to the plot of the data we have:

Vi = λiv̂i

21Eigenvalues and eigenvectors
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 points along the direction of the 
greatest variance.  and points 
in the direction of the next biggest 
variance.

V1
V2 ⊥ V1
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The variance varies along an ellipse 
aligned along  with semi major axis 
of  and semi minor axis of .

V1
λ1 λ2



We now find the eigenvectors and eigenvalues of the covariance matrix C:  the 
principal components, which create an orthogonal basis. 

From the correlation matrix given above, we find: 

The eigenvectors are orthonormal:   

Note: the sum of the eigenvalues = the number of data types: 

PTP = I
p

∑
i=1

λk = p

22PCA on the full dataset

3.06229
1.21896
0.870424
0.586331
0.220362
0.0416367

λ = P =
-0.393417 -0.391968 -0.0774367 0.706188 -0.431937 -0.0178061
-0.38676 -0.0474299 0.654928 -0.451536 -0.457014 -0.0805578
-0.170358 -0.644791 -0.527402 -0.525786 -0.0246437 -0.00331295
0.506673 -0.351709 0.203926 0.0689972 -0.0348986 -0.756319
-0.411283 0.508746 -0.407694 -0.0727362 -0.107181 -0.623724
-0.49066 -0.214087 0.281282 0.104463 0.768931 -0.179255



The eigenvalues measure the amount of variance within each principal 
component. 

 

As noted . 

We define the fractional variance of each principal component as (its eigenvalue 
normalized by the sum of the eigenvalues): 
  

The fractional variance is:    

          

λ = [3.06229, 1.21896, 0.870424, 0.586331, 0.220362, 0.041637]
6

∑
i=1

λk = 6

λf
i =

λi

∑6
i=1 λk

=
λi

6

λf = [0.510381, 0.20316, 0.145071, 0.0977218, 0.036727, 0.00693945]

23Variance and the principal values 



24Screeplot

The screeplot shows 
the variance 

explained by each PC



Cumulative fractional variance measures how much variance is included as new PCs are included 
in the description of the data:  

 

                

71 % of the variance is contained in the first 2 principal components and 86 % in the first three 
principal components (PCs). 

We can develop reduced dimensional representations of the data using only the first few 
principal components (PCs). 

The aim of PCA is find linear combinations of the variables that explain a large fraction of 
the data, preferably only two [principal components]!

Λk =
k

∑
i=1

λf
i = (0.510381, 0.713541, 0.858612, 0.956334, 0.993061 1.)

25Cumulative fractional variance



For Wednesday, read up on biplots, which are a very useful way to compare 
the datapoints against the variables for pairs of PCs

26Biplots - study ahead


