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2Recap

To date, we have discussed:
• linear algebra 
• linear regression: prediction
• multiple linear regression: prediction
• Regular expressions

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


3Resources

Useful sources of information (both in Canvas):
• Hastie et al. Elements of Statistical Learning. linear 

regression: prediction
• Wiki pages on lasso (statistics) and ridge (statistics)
• Also:

https://www.statology.org/lasso-regression-in-r/
https://www.statology.org/ridge-regression-in-r/

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


4model availability 

R: glmnet package (available on CRAN)

Matlab: probably available …

Mathematica: probably available …

There are also implementations in Python, …

Pick your favorite program and search for feature selection in the documentation.



The objective of today’s lecture is to acquaint you with feature selection, 
which is equivalent to model selection (as you find it in Hastie et al.).
The point is that data sets often have variables (features) that trend together 
i.e., are co-linear or close to it.  Or a given feature does not have any 
predictive power and needs to be removed from the fit.
You have, fairly obviously, already done this but only by hand. There are 
tools to help do this automatically and provide quantification of how well it is 
working. Also, the by-hand approach is completely discrete: variables are 
either included or not.  The same criticism applies to best-subset selection
which is a variant of MLR.
We start with ridge regression analysis. And follow that with lasso. And then, 
time allowing, FeaLect.

• Objective(s)



It is always possible to run an analysis on the full dataset. However, it is far better 
practice to split your data into two pieces, one for training and the other for 
validation.  The choice of fractions is arbitrary and depends somewhat on the 
number of datapoints but a 2/3rds for training and 1/3rd for validation is reasonable. 
Think of this as cutting the spreadsheet horizontally into two pieces.
A further advance is to use cross-validation. This is simpler than it sounds because 
it just means repeating the analysis, say, ten times with different choices of the split 
(between training and validation) and recording the accuracy in each test.  This 
approach is also known as k-fold validation.
Any approach has a complexity associated with it. The simplest complexity 
measure is the (discrete) number of variables (features) included in a best-subset
model.  For ridge this is the effective degrees of freedom and for lasso this is the 
lambda value. This leads to consideration of the balance between complexity and 
the prediction error. Although the latter decreases with complexity, it usually levels 
out, which means that one can choose a (minimum) complexity that brings the 
prediction error within one standard deviation of the best case.

• Cross-validation, training

https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538



cv.glmnet applies cross-validation
In a call to glmnet, alpha=0 gives you ridge, and alpha=1 gives you 
lasso.  You can vary alpha continuously between 0 & 1.
When using lasso, we suggest that you do not use the minimum lambda but 
rather “1se”, i.e., 
bestlam2 <- cv.out$lambda.1se, as opposed to 
bestlam <- cv.out$lambda.min

• glmnet



Quoting from Hastie et al.:

FIGURE 3.7. Estimated prediction error curves and 
their standard errors for the various selection and 
shrinkage methods. Each curve is plotted as a 
function of the corresponding complexity parameter 
for that method. The horizontal axis has been chosen 
so that the model complexity increases as we move 
from left to right. The estimates of prediction error and 
their standard errors were obtained by tenfold cross-
validation; full details are given in Section 7.10. The 
least complex model within one standard error of the 
best is chosen, indicated by the purple vertical broken 
lines.
This is also discussed in terms of bias versus 
variance.  The aim is always to get a combination of 
the two forms of error so that there is a clear choice of 
the trade-off at the minimum error.

• Complexity vs. Error
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Partial Least Squares

FIGURE 3.7. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complexity parameter for that method. The horizontal axis
has been chosen so that the model complexity increases as we move from left to
right. The estimates of prediction error and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen, indicated by the purple
vertical broken lines.
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The best-subset regression seeks 
the subset of the available variables 
that produces the smallest residual 
sum of the squares. Algorithm 
development has extended the 
effective maximum out to ≈40, e.g., 
leaps & bounds by Furnival & 
Wilson (1974).
For a subset size k=2, the selected 
variables that minimize the error 
(RSS) do not have to include the 
single variable that minimizes for 
k=1, and so on and so forth.
The graph shows the example from 
Hastie et al.

• Best-Subset selection
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2 Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for pmuch larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:

Possible source of the data:  https://www.rdocumentation.org/packages/MultNonParam/versions/1.2.5/topics/prostate.data
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Lasso stands for least absolute shrinkage and selection operator.
It is a method that does both variable|feature selection and regularization. 
This is intended to improve accuracy of results and their interpretation.
As an instance of convergent evolution, the method was originally developed 
in geophysics1.  Later, Robert Tibshirani re-discovered the technique and 
named it lasso2.
1. Santosa, Fadil; Symes, William W. (1986). "Linear inversion of band-

limited reflection seismograms". SIAM Journal on Scientific and 
Statistical Computing. SIAM. 7 (4): 1307–1330. doi:10.1137/0907087

2. Tibshirani, Robert (1996). "Regression Shrinkage and Selection via the 
lasso". J. Royal Statistical Soc. Series B (methodological). Wiley. 58 (1): 
267–88. JSTOR 2346178

• Lasso regression analysis - development



Lasso came after ridge regression was established and in use. The latter 
improves prediction accuracy by shrinking the sum of the squares of the 
regression coefficients to be < a chosen value so as to avoid|minimize over-
fitting.  It does not, however, perform covariate selection, which obscures 
interpretation of the model.
Instead, lasso forces the absolute value of the RSS to be < a chosen value, 
thus forcing some coefficients to (essentially) zero, which is how it excludes 
the associated variables (features).  ridge regression does not zero out 
coefficients.
Ridge and lasso are both variants of multiple linear regression.

• Lasso method versus Ridge



The numerical|quantitative objective of lasso is to minimize the 
same RSS as in MLR but subject to a specific constraint.

The key addition compared to MLR is the quantity t, which the 
analyst’s choice of the parameter that determines the degree of 
regularization. 
Set X as the covariate matrix with Xij=(xi)j, and (xi)T is the ith row of 
X, we can re-write as:

• Lasso technique



The notation 

is the standard way to write the Lp norm.
(Thinking of the question of scaling the data) if we write the scalar mean of the 
datapoints as <x> and that of the responses as <y>, the resulting estimate 
for b0 is <y>- <x>Tb so that:

This motivates the use of auto-scaling the data, which glmnet does for you. It 
is also normal practice to standardize the co-variates so that the solution does 
not depend on the scales associated with the measured variables. 



In fact, the equations to this point are almost the same as for ridge 
regression!
Writing the same equation with a complexity parameter l that controls the 
amount of shrinkage (of the coefficients), we get:

l is limited to l ≥ 0. Larger values shrink coefficients down towards zero.
Re-writing in a slightly different way:

The t and l variables are 
equivalent to each other.

3.4 Shrinkage Methods 63

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2.477 2.452 2.468 2.497 2.452

lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238 0.169 0.289 0.344

age −0.141 −0.046 −0.152 −0.026
lbph 0.210 0.162 0.002 0.214 0.220
svi 0.305 0.227 0.094 0.315 0.243
lcp −0.288 0.000 −0.051 0.079

gleason −0.021 0.040 0.232 0.011
pgg45 0.267 0.133 −0.056 0.084

Test Error 0.521 0.492 0.492 0.479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152

squares,

β̂ridge = argmin
β

{ N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj
)2

+ λ
p∑

j=1

β2
j

}
. (3.41)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of λ, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

β̂ridge = argmin
β

N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj
)2

,

subject to
p∑

j=1

β2
j ≤ t,

(3.42)

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters λ in (3.41) and t in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin. By imposing a
size constraint on the coefficients, as in (3.42), this problem is alleviated.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41). In addition,
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Continuing on with the autoscaled data (2 slides back), we write the equation 
in matrix form with the RSS as a function of the complexity parameter. X is 
the data matrix with N rows and p columns (for auto-scaled data).

Now we can write a solution for the ridge problem as follows, I is the identity 
matrix:

Inserting the penalty term as quadratic in beta, the ridge regression solution 
is a linear function of y.  It also adds a constant to each leading diagonal 
term in XTX; this avoids nonsingular matrices, i.e., copes with collinearity.

• Ridge regression solution

64 3. Linear Methods for Regression

notice that the intercept β0 has been left out of the penalty term. Penal-
ization of the intercept would make the procedure depend on the origin
chosen for Y ; that is, adding a constant c to each of the targets yi would
not simply result in a shift of the predictions by the same amount c. It
can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each xij gets

replaced by xij − x̄j . We estimate β0 by ȳ = 1
N

∑N
1 yi. The remaining co-

efficients get estimated by a ridge regression without intercept, using the
centered xij . Henceforth we assume that this centering has been done, so
that the input matrix X has p (rather than p+ 1) columns.
Writing the criterion in (3.41) in matrix form,

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ, (3.43)

the ridge regression solutions are easily seen to be

β̂ridge = (XTX+ λI)−1XTy, (3.44)

where I is the p×p identity matrix. Notice that with the choice of quadratic
penalty βTβ, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of XTX before
inversion. This makes the problem nonsingular, even if XTX is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.8 shows the ridge coefficient estimates for the prostate can-
cer example, plotted as functions of df(λ), the effective degrees of freedom
implied by the penalty λ (defined in (3.50) on page 68). In the case of or-
thonormal inputs, the ridge estimates are just a scaled version of the least
squares estimates, that is, β̂ridge = β̂/(1 + λ).
Ridge regression can also be derived as the mean or mode of a poste-

rior distribution, with a suitably chosen prior distribution. In detail, sup-
pose yi ∼ N(β0 + xT

i β,σ
2), and the parameters βj are each distributed as

N(0, τ2), independently of one another. Then the (negative) log-posterior
density of β, with τ2 and σ2 assumed known, is equal to the expression
in curly braces in (3.41), with λ = σ2/τ2 (Exercise 3.6). Thus the ridge
estimate is the mode of the posterior distribution; since the distribution is
Gaussian, it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
composition is extremely useful in the analysis of many statistical methods.
The SVD of the N × p matrix X has the form

X = UDVT . (3.45)



This graph (from Hastie et al.) gives us 
an idea of how ridge regression works. 
As the effective degrees of freedom 
decrease (from right to left), the 
coefficients (none of them ever getting 
to zero except at crossing points) vary 
continuously in different proportions.
Note the use of the effective degrees 
of freedom for the horizontal axis.  
Ordinary MLR corresponds to the 
situation on the right.

• Ridge example
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.



There is a convenient variable for use with 
ridge regression called the effective degrees of 
freedom, df.  This is a decreasing function of 
the regularization factor l, i.e., as you increase 
l, the effective degrees of freedom decreases 
(down to zero).  So, we start with the available 
p variables and decrease from there.  The 
effective degrees of freedom is calculated as 
follows.  One has to first diagonalize the matrix 
X, which can be done with singular value 
decomposition (SVD). The latter is a widely 
used technique of numerical analysis (not just 
statistics) that rotates the data into a 
combination of diagonal matrix and a rotation 
matrix. The values on the diagonal are dj,	
j=1,p. Any zero entry means that the matrix is 
singular (co-linearity!).

• Effective degrees of freedom, df
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In Figure 3.7 we have plotted the estimated prediction error versus the
quantity

df(λ) = tr[X(XTX+ λI)−1XT ],

= tr(Hλ)

=
p∑

j=1

d2j
d2j + λ

. (3.50)

This monotone decreasing function of λ is the effective degrees of freedom
of the ridge regression fit. Usually in a linear-regression fit with p variables,
the degrees-of-freedom of the fit is p, the number of free parameters. The
idea is that although all p coefficients in a ridge fit will be non-zero, they
are fit in a restricted fashion controlled by λ. Note that df(λ) = p when
λ = 0 (no regularization) and df(λ) → 0 as λ → ∞. Of course there
is always an additional one degree of freedom for the intercept, which was
removed apriori. This definition is motivated in more detail in Section 3.4.4
and Sections 7.4–7.6. In Figure 3.7 the minimum occurs at df(λ) = 5.0.
Table 3.3 shows that ridge regression reduces the test error of the full least
squares estimates by a small amount.

3.4.2 The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

β̂lasso = argmin
β

N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj
)2

subject to
p∑

j=1

|βj | ≤ t. (3.51)

Just as in ridge regression, we can re-parametrize the constant β0 by stan-
dardizing the predictors; the solution for β̂0 is ȳ, and thereafter we fit a
model without an intercept (Exercise 3.5). In the signal processing litera-
ture, the lasso is also known as basis pursuit (Chen et al., 1998).

We can also write the lasso problem in the equivalent Lagrangian form

β̂lasso = argmin
β

{
1

2

N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj
)2

+ λ
p∑

j=1

|βj |
}
. (3.52)

Notice the similarity to the ridge regression problem (3.42) or (3.41): the
L2 ridge penalty

∑p
1 β

2
j is replaced by the L1 lasso penalty

∑p
1 |βj |. This

latter constraint makes the solutions nonlinear in the yi, and there is no
closed form expression as in ridge regression. Computing the lasso solution

Note. The SVD of an auto-scaled 
Nxp data matrix X is

X	=	UDVT
U and V are Nxp and pxp orthogonal 

matrices, respectively



Did you notice the difference between the two 
approaches|methods?!
The answer lies in which norm is used to obtain a solution.  

Ridge uses L2

whereas Lasso uses L1.
Which do you think might do better with large outlier values?
Ridge does a proportional decrease in the coefficients.  Lasso, 
by contrast, translates each coefficients so that different 
variable reach zero at different points.
For lasso, we commonly plot versus lambda (decreases from 
the max to min from right to left) or, more intuitively versus the 
shrinkage factor s, which varies between s=1	(OLS) down to 
s=0 (next slide).

• Ridge versus Lasso – what is the difference?!



At the largest value of s, the result 
is the same as OLS, i.e., all 
coefficients are included. It is now 
very obvious that as you decrease 
s, i.e., shrink, certain variables hit 
zero before others.  Also note how 
you can observe switch-overs in 
the variables. Hastie et al.

• Lasso example
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s = t/

∑p
1 |β̂j |. A vertical line is drawn at s = 0.36,

the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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• Bias-Variance Trade-off

EPE: Expected Prediction Error
D: Sampled Data 

Error due to 
sampled data 

Variance (𝜀)

Bias-variance trade-off 🔛

Previously, we discussed complexity vs error: we can also analyze this trade-off 
in terms of bias versus variance 



• Bias-Variance Trade-off

Underfitting

First figure in Scott Fortmann-Roe’s
Understanding the Bias-Variance Tradeoff

Overfitting 
Biased: simple models; not all needed variables
Variance: complex models; too many variables

Linear Models have a high-bias problem!

http://scott.fortmann-roe.com/docs/BiasVariance.html


• Bias-Variance Trade-off

https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/

🔛



• Bias-Variance Trade-off

High-variance problems have a low training error and a 
very high validation error

https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/



• Ridge / Lasso Regularization

• Subset Selec;on: Iden;fy a subset of predictors

• Regulariza;on: all predictors, however es;mated 
coefficients are shrunken towards zero (ridge) / exactly zero 
(lasso)

• Ridge: λ is the tuning parameter
• Leads to low variance
• Disadvantage: all predictors

• Lasso: performs variable 
selec;on

shrinkage penalty
🔛
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QUESTIONS?



Homework will contain questions on regular expressions and on feature 
selection.

26• homework


