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To date, we have discussed:
* |linear algebra
* linear regression: prediction
* multiple linear regression: prediction
* Regular expressions



https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Useful sources of information (both in Canvas):
* Hastie et al. Elements of Statistical Learning. linear
regression: prediction
* Wiki pages on lasso (statistics) and ridge (statistics)
e Also:
https://www.statology.org/lasso-regression-in-r/
https://www.statology.org/ridge-regression-in-r/

Resources



https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

R: g lmnet package (available on CRAN)
Matlab: probably available ..
Mathematica: probably available ..
There are also implementations in Python, ...

Pick your favorite program and search for feature selection in the documentation.




The objective of today’s lecture is to acquaint you with feature selection,
which is equivalent to model selection (as you find it in Hastie et al.).

The point is that data sets often have variables (features) that trend together
l.e., are co-linear or close to it. Or a given feature does not have any
predictive power and needs to be removed from the fit.

You have, fairly obviously, already done this but only by hand. There are
tools to help do this automatically and provide quantification of how well it is
working. Also, the by-hand approach is completely discrete: variables are
either included or not. The same criticism applies to best-subset selection
which is a variant of MLR.

We start with ridge regression analysis. And follow that with /lasso. And then,
time allowing, Fealect.

* Objective(s)




It is always possible to run an analysis on the full dataset. However, it is far better
practice to split your data into two pieces, one for training and the other for
validation. The choice of fractions is arbitrary and depends somewhat on the
number of datapoints but a 2/3rds for training and 1/31 for validation is reasonable.
Think of this as cutting the spreadsheet horizontally into two pieces.

A further advance is to use cross-validation. This is simpler than it sounds because
it just means repeating the analysis, say, ten times with different choices of the split
(between training and validation) and recording the accuracy in each test. This
approach is also known as k-fold validation.

Any approach has a complexity associated with it. The simplest complexity
measure is the (discrete) number of variables (features) included in a best-subset
model. For ridge this is the effective degrees of freedom and for lasso this is the
lambda value. This leads to consideration of the balance between complexity and
the prediction error. Although the latter decreases with complexity, it usually levels
out, which means that one can choose a (minimum) complexity that brings the
prediction error within one standard deviation of the best case.

https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538

* Cross-validation, training




cv.glmnet applies cross-validation

In a call to glmnet, alpha=0 gives you ridge, and a lpha=1 gives you
lasso. You can vary alpha continuously between 0 & 1.

When using lasso, we suggest that you do not use the minimum lambda but

rather “1se”, i.e.,
bestlam?2 <- cv.out$lambda.lse, as opposed to

bestlam <- cv.out$lambda.min




Quoting from Hastie et al.:

FIGURE 3.7. Estimated prediction error curves and
their standard errors for the various selection and
shrinkage methods. Each curve is plotted as a
function of the corresponding complexity parameter
for that method. The horizontal axis has been chosen
so that the model complexity increases as we move
from left to right. The estimates of prediction error and
their standard errors were obtained by tenfold cross-
validation; full details are given in Section 7.10. The
least complex model within one standard error of the
best is chosen, indicated by the purple vertical broken
lines.

This is also discussed in terms of bias versus
variance. The aim is always to get a combination of
the two forms of error so that there is a clear choice of
the trade-off at the minimum error.
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The best-subset regression seeks
the subset of the available variables
that produces the smallest residual
sum of the squares. Algorithm
development has extended the
effective maximum out to =40, e.g.,
leaps & bounds by Furnival &
Wilson (1974).
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The graph shows the example from FIGURE 3.5. All possible subset models for the prostate cancer example. At
Hastie et al. each subset size is shown the residual sum-of-squares for each model of that size.

Possible source of the data: https://www.rdocumentation.org/packages/MultNonParam/versions/1.2.5/topics/prostate.data




Lasso stands for least absolute shrinkage and selection operator.

It is a method that does both variable|feature selection and regularization.
This is intended to improve accuracy of results and their interpretation.

As an instance of convergent evolution, the method was originally developed

in geophysics'. Later, Robert Tibshirani re-discovered the technique and
named it /lasso?.

1. Santosa, Fadil; Symes, William W. (1986). "Linear inversion of band-
limited reflection seismograms". SIAM Journal on Scientific and
Statistical Computing. SIAM. 7 (4): 1307-1330. doi:10.1137/0907087

2. Tibshirani, Robert (1996). "Regression Shrinkage and Selection via the

lasso". J. Royal Statistical Soc. Series B (methodological). Wiley. 58 (1):
267-88. JSTOR 2346178

* Lasso regression analysis - development




Lasso came after ridge regression was established and in use. The latter
improves prediction accuracy by shrinking the sum of the squares of the
regression coefficients to be < a chosen value so as to avoid|minimize over-
fitting. It does not, however, perform covariate selection, which obscures
interpretation of the model.

Instead, /lasso forces the absolute value of the RSS to be < a chosen value,
thus forcing some coefficients to (essentially) zero, which is how it excludes
the associated variables (features). ridge regression does not zero out
coefficients.

Ridge and lasso are both variants of multiple linear regression.

* Lasso method versus Ridge




The numerical|quantitative objective of lasso is to minimize the
same RSS as in MLR but subject to a specific constraint.

N p
: T o2 :
min E i — Bo — x; subject to E 1<t

The key addition compared to MLR is the quantity ¢ which the
analyst’s choice of the parameter that determines the degree of
regularization.

Set X as the covariate matrix with X;=(x);, and (x)" is the " row of
X, we can re-write as:

/80718

.  Lasso technique

. 1 .
min {1 ly — oLy — X813 b subject o ] <t



1=1

N 1/p
The notation  ||u|l, = (Z |Ui|p>

Is the standard way to write the /7 norm.

(Thinking of the question of scaling the data) if we write the scalar mean of the
datapoints as <x> and that of the responses as <y>, the resulting estimate
for f is <y>- <x>Tfso that:

2 T =T T - \T
Yi—Bo—z; B=y— (-2 B)—z; B=(yi—y) — (z: —Z) B
This motivates the use of auto-scaling the data, which glmnet does for you. It

IS also normal practice to standardize the co-variates so that the solution does
not depend on the scales associated with the measured variables.

(>~




In fact, the equations to this point are almost the same as for ridge
regression!
Writing the same equation with a complexity parameter A that controls the

amount of shrinkage (of the coefficients), we get:
N

P p
fBridge argmin{Z(yi — By — injﬁj>2 - )\Zﬁf}
B i=1 =il J=1
Ais limited to A = 0. Larger values shrink coefficients down towards zero.
_ T . . H . A . il & 2
Re-writing in a slightly different way: fridge _ arg;ninz<yi —Bo—Y my Bj) ,
i=1 j=1

The t and A variables are p
equivalent to each other. subject to » 7 <t,

=



Continuing on with the autoscaled data (2 slides back), we write the equation
in matrix form with the RSS as a function of the complexity parameter. Xis
the data matrix with Nrows and p columns (for auto-scaled data).

RSS(A) = (y — XB)" (y — XB) + A" 5,
Now we can write a solution for the ridge problem as follows, I is the identity
matrix:
ﬁrzdge _ (XTX + )\I)_IXTy

Inserting the penalty term as quadratic in beta, the ridge regression solution
is a linear function of y. It also adds a constant to each leading diagonal
term in X'X; this avoids nonsingular matrices, i.e., copes with collinearity.

 Ridge regression solution




This graph (from Hastie et al.) gives us

an idea of how ridge regression works.

As the effective degrees of freedom
decrease (from right to left), the
coefficients (none of them ever getting
to zero except at crossing points) vary
continuously in different proportions.

Note the use of the effective degrees
of freedom for the horizontal axis.
Ordinary MLR corresponds to the
situation on the right.

. * Ridge example
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter X is varied. Coefficients are plotted versus df(\), the effective
degrees of freedom. A wvertical line is drawn at df = 5.0, the value chosen by
cross-validation.



There is a convenient variable for use with
ridge regression called the effective degrees of
freedom, df. This is a decreasing function of df()\)
the reqgularization factor 2, i.e., as you increase

A, the effective degrees of freedom decreases —
(down to zero). So, we start with the available
p variables and decrease from there. The
effective degrees of freedom is calculated as a
follows. One has to first diagonalize the matrix
X, which can be done with singular value
decomposition (SVD). The latter is a widely
used technique of numerical analysis (not just
statistics) that rotates the data into a
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Note. The SVD of an auto-scaled

combination of diagonal matrix and a rotation NXxp data matrix X is
matrix. The values on the diagonal are d, X =UDVT
j=1,p. Any zero entry means that the matrix is U and V are Nxp and pxp orthogonal

singular (co-linearity!). matrices, respectively

* Effective degrees of freedom, df



Did you notice the difference between the two
approaches|methods?!

The answer lies in which norm is used to obtain a solution.
Ridge uses L2
whereas Lasso uses L.

Which do you think might do better with large outlier values?

Ridge does a proportional decrease in the coefficients. Lasso,
by contrast, translates each coefficients so that different
variable reach zero at different points.

For lasso, we commonly plot versus lambda (decreases from
the max to min from right to left) or, more intuitively versus the
shrinkage factor s, which varies between s=1 (OLS) down to
s=0 (next slide).

 Ridge versus Lasso — what is the difference?!

- > Bl
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At the largest value of s, the result

is the same as OLS, i.e., all °
coefficients are included. It is now
very obvious that as you decrease 3 -

s, 1.e., shrink, certain variables hit
zero before others. Also note how
you can observe switch-overs in
the variables. Hastie et al.
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ SF |3;]. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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Previously, we discussed complexity vs error: we can also analyze this trade-off
in terms of bias versus variance

A

BPE (Y, f (2)) = Ey.xo [(Y —f) 1 x= ] —Ep [(f(cv) ~f <w>)2] +Vyx [V | X =1]

~

~ ~- - irreducible error
reducible error
EPE: Expected Prediction Error Error due to Variance (&)
D: Sampled Data sampled data

MSE (f(z), f (¢)) = Ep [(f(a:) _ f*(w)>2] = (f@) - E [f(a:)h? +E [(f(a:) _E [f(a:)]yl




Biased: simple models; not all needed variables
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Fig. 1 Graphical illustration of bias and variance.

Linear Models have a high-bias problem!



http://scott.fortmann-roe.com/docs/BiasVariance.html
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https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
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High-variance problems have a low training error and a
very high validation error

https://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/




e Subset Selection: Identify a subset of predictors 2

n p
RSS=> (vi—Bo—> Bz
i=1 i=1

* Regularization: all predictors, however estimated
coefficients are shrunken towards zero (ridge) / exactly zero

(lasso)
2

n p p p
* Ridge: A is the tuning parameter 3 Bz 9 9
— Po — x +A) Bi=RSS+ A 3
* Leads to low variance ; Vi ; A ; J Z j

e Disadvantage: all predictors

=1

2
n

. p p p
* Lasso: performs variable Z yi — Bo — Z Bizij | + A Z 18;| =RSS + A Z I3
i=1 i=1 7=1

selection —

shrinkage penalty




QUESTIONS?




Homework will contain questions on regular expressions and on feature
selection.




