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Recapitulation

To date, we have discussed:

Linear algebra 
Linear regression: prediction
Multiple linear regression (MLR): prediction
Regular expressions
Principal component analysis (PCA)
Canonical Correlation Analysis (CCA)
Random Forest (RF)
Clustering 
Artificial Neural Nets
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Resources
• Hastie et al. Elements of Statistical Learning:

Neural Nets, starting on about p. 389

• https://victorzhou.com/blog/intro-to-neural-networks
• https://en.wikipedia.org/wiki/History_of_artificial_neural_networks

• https://scipy-lectures.org/advanced/mathematical_optimization/index.html
• http://neuralnetworksanddeeplearning.com/chap1.html

seems to have nice simple explanations of, e.g., perceptrons, and what the adjustment of weights in the network 
accomplishes.

• http://cs231n.github.io/
This appears to be a very complete set of notes on NNs, actually a complete course.

• https://machinelearningmastery.com/neural-network-models-for-combined-classification-and-regression/

• General description of NN: https://victorzhou.com/blog/intro-to-neural-networks
• For explaining forward and backward propagation: https://tech.trustpilot.com/forward-and-backward-

propagation-5dc3c49c9a05

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/
https://machinelearningmastery.com/neural-network-models-for-combined-classification-and-regression/
https://victorzhou.com/blog/intro-to-neural-networks
https://tech.trustpilot.com/forward-and-backward-propagation-5dc3c49c9a05
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Convolutional Neural Networks and Black Box AI

Elizabeth A. Holm
27-515 Introduction to Computational Materials Science



5A caveat

I recently watched a lecture by Geoffrey Hinton, University of Toronto and 
developer of CNNs.

He pointed out that it took about 30 years for the NN people to recognize that 
they did not have to use a logistic activation function and that a tanh function 
works better in some cases.

He emphasized that just because everyone uses CNNs, they are not the only 
way to do this problem and that new methods are likely to be easier and 
better.

My point is that none of this is magic. 
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Many of the high profile advances in computer science…

…are based on deep artificial 
neural networks.
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Deep learning beats humans at their own game
• Computer vision outperforms radiologists at detecting abnormalities in chest x-rays

P. Rajpurkar et al. arXiv:1711.05225



Playing Atari with Deep Reinforcement Learning. 
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller

https://e2eml.school/how_convolutional_neural_networks_work.html

http://arxiv.org/pdf/1312.5602v1.pdf
http://arxiv.org/pdf/1312.5602v1.pdf
https://e2eml.school/how_convolutional_neural_networks_work.html


Robot Learning ManipulationAction Plans by “Watching” Unconstrained Videos  from the World Wide Web.
Yezhou Yang, Cornelia Fermuller, Yiannis Aloimonos

https://e2eml.school/how_convolutional_neural_networks_work.html

http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf
http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf
https://e2eml.school/how_convolutional_neural_networks_work.html
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Let’s take a moment to think about image data…

Natural Images

• One instance of the object
• Features at various length scales
• Arbitrary field of view
• Almost always oriented

Microstructures

• Many instances of the object(s)
• Characteristic length scale(s)
• Standard field of view
• Often not oriented
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Convolutional Neural Networks for image analysis

• The feature learning pipeline turns the image into a string of numbers (feature vector).

• Classification entails the features “voting” on the image category.



13Filters

Consider an X as represented 
pixel by pixel:

Identify 
features:

https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html


14Filters

Consider an X as represented 
pixel by pixel:

Identify 
features:

Multiply each entry in the 3x3 area 
in the image by the equivalent 
entry in the filter (feature) and sum 
those terms and divide by the 
number of pixels (9):

(1×1) + (−1×−1) +⋯ /9 = 1

This gives a measure of the 
correlation between the pixels in 
the image and that particular 
feature.  We locate that value at 
the upper left corner.  We do this 
for all pixels for all filters. 

(−1)×1 = −1
(−1)×(−1) = 1
(−1)×(−1) = 1
(−1)×(−1) = −1
(−1)×1 = −1
(−1)×(−1) = 1
1×(−1) = −1
(−1)×(−1) = 1

1×1 = 1

∑/9 = 3/9 = 0.333
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The elements of Convolutional Neural Networks: Filters

=

image filter convolution
(feature map)https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html


There are many filters



17What if our X was like this?



=

=

=

https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html


19Filters

Consider an O as represented 
pixel by pixel:

Identify 
features:

Also in X

Identifies O not X

Identifies O not X

The combination of features 
indicate the object
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• The characteristic textures make sense, and capture the features of the repeated objects.
• This is a sanity check – verification, not validation.

Filter activations capture visual textures

J. Ling et al., Mater. Discovery 10 19-28 (2017)
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The elements of Convolutional Neural Networks: Pooling

convolution pooling
(downsampling)

input to next convolution
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Of course, the whole stack of convolutions are pooled
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Pooling captures features at different length scales

J. Ling et al., Mater. Discovery 10 19-28 (2017)

• The length scale for optimal ML corresponds to the characteristic microstructural scale.
• This length scale provides an alternative way to define a representative volume element.
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The elements of Convolutional Neural Networks: ReLUs

convolution rectifier rectified convolution

x = max(x,0)



25A neural net: activation functions

ReLU takes all negative values 
and sets them to 0.  Nothing 
else changes.

ReLU = rectified linear unit.
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ReLU is applied to the full stack of convolutions, too.
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Putting together the feature learning pipeline

• Layers are designed and organized to optimize results.

feature vector
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Putting together the feature learning pipeline
• The feature vector numerically encodes the visual information contained in the image.

– Filter activations sample pixel neighborhoods
– Pooling ensures neighborhoods are evaluated at different length scales

• Feature vectors enable objective, autonomous microstructural analysis.
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The output of Convolutional Neural Networks: Classification

X

O
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Putting it all together

X
O



31Why CNNs not NNs?

Consider a small figure, 32 pixels by 32 pixels and 3 color channels.  A single fully 
connected neuron in a first hidden layer in a regular neural net would have 32×32×3 =
3072 weights.  Scaling to an a more reasonably sized image, such as 200x200x3 would 
have 120,000 weights:  

• a huge number of parameters that would quickly lead to overfitting.  

In CNNs, input images are taken as a volume, e.g., a 32x32x3 image, and the neurons in 
a layer will only be connected to small volume in the previous layer. The output layer is 
reduced to dimensions (in this case) of 1x1x10 (the feature vector).

Notes from Stanford CS 231 course



32Convolution

Convolution in action:  https://cs231n.github.io/convolutional-networks/#fc
• Convolution is essentially a dot product between the filters and local regions of the 

input.
• Note that convolution depends on the size of the area and the stride, which controls 

the dimensions after convolution.

Notes from Stanford CS 231 course

stride of 2 stride of 3

https://cs231n.github.io/convolutional-networks/


33Convolution as a neural net Notes from Stanford CS 231 course



34Pooling

“Inserting a Pooling layer in-between successive Conv layers in a ConvNet architecture 
progressively reduces the spatial size of the representation to reduce the amount of 
parameters and computation in the network, and hence to also control overfitting. The 
Pooling Layer operates independently on every depth slice and resizes it using the MAX 
operation. The most common form is a pooling layer with filters of size 2x2 applied with a 
stride of 2 downsamples every depth slice in the input by 2 along both width and height, 
discarding 75% of the activations.” (edited for brevity)

Notes from Stanford CS 231 course



35Pooling or strictly Convolution?

Some have suggested that one could drop the pooling stage and replace it 
with convolutions with a larger stride.
That would still reduce the size (and number of parameters) 

https://arxiv.org/pdf/1412.6806.pdf

https://arxiv.org/pdf/1412.6806.pdf
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The output of Convolutional Neural Networks: Classification

X

O
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https://e2eml.school/how_convolutional_neural_networks_work.html


Gradient descent 

weight

error

https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html
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Convolutional Neural Networks for image analysis: Results

Use voting to perform classification:

Krizhevsky, Alex & Sutskever, Ilya & E. Hinton, Geoffrey. (2012). Neural Information Processing Systems. 25. 10.1145/3065386. 

Use the feature vector to compute 
visual similarity:



Hyperparameters (knobs)

https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html


Architecture

https://e2eml.school/how_convolutional_neural_networks_work.html

https://e2eml.school/how_convolutional_neural_networks_work.html
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Application to microstructural science: Visual similarity

• The feature vector can be used to 
compare images on the basis of 
visual content.

• Computing visual similarity 
naturally translates to a visual 
search engine.

• Access corporate knowledge 
permanently and efficiently:
http://uhcsdb.materials.cmu.edu/
– Institutional memory independent 

of individual memory.

B. L. DeCost, et al., IMMI 6 197-205  (2017)
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Application to microstructural science: Classification

• 1800 images of 
surface defects in 
hot-rolled steel

• Use feature vector 
with machine 
learning to classify 
by defect type

• The "NEU"
standard problem

A. R. Kitahara, et al., IMMI 7 148-156  (2018)

98.3% accuracy
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Biases: AIs can be misinterpreted

• An AI system identified “criminal” vs. “law abiding” faces with 89.5 % 
accuracy.

The data set: Interpreting the differences:

X. Wu and X. Zhang, arXiv 1611.04135v2
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Brittleness: AIs can be fooled
• Adversarial images can cause a CNN to make spectacularly wrong decisions.

https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/

https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
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Fallability: AIs don’t always learn the right things
• A CNN-based deep learning system was trained to identify classes of objects in 

photographs.
• Masking was used to evaluate critical features that the computer associates with an object.

• Some masks made sense:

• Some did not:

Fong et al., arXiv:1704.03296v1 
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Interpreting AI answers

• There are two modes of artificial intelligence:

– Interpretable = Basis for decision is known

– Black Box = Basis for decision is unknown

• Scientists naturally tend to avoid black box 
models.

E. A. Holm Science 364:6435 26-27 (2019)
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And yet … we use black box intelligence all the time
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Embracing the black box…

• When is a black box OK?

– The overall cost of wrong answers is low.

– The method is better than all alternatives 
within its domain.

– The results inspire or guide further inquiry.

E. A. Holm Science 364:6435 26-27 (2019)
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The overall cost of wrong answers is low:
Autonomous microstructural segmentation using deep learning 

• Segmenting complex, multi-component microstructures
• Accurate (93 ± 3%)

• Objective

• Repeatable

• Indefatigable

• Permanent

• Exactly as 
interpretable as a 
graduate student

Original Image Grad student Pixel-Net
DeCost, B., et al. Microscopy and 
Microanalysis, 25(1), 21-29. (2019)
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The overall cost of wrong answers is low
• Targeted advertising and recommendations
• Content organization and analysis
• Content generation
• Bots
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The method is better than all alternatives within its domain:
Building better microstructures

“Can we build better synthetic microstructures with ML?”

Actual PFIB section of 
the SOFC cathode

DREAM3d synthetic 
microstructure
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Generative adversarial networks (GANs) can build 
convincing “fake” images

• Two CNNs compete: One creates images to fool the other.
• Validation is based on visual similarity (at best) or purely subjective (at worst).
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GANs produces convincing results
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GANs produces convincing results

Real imagesFake images
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The method is better than all alternatives within its domain

The key is due diligence.

• Image interpretation – materials, 
geology, satellite data, …

• Autonomy – self-operating equipment, 
robotics, …

• Predictions – actuarial, financial 
markets, opportunity identification, …

• Analysis - quality control, process 
optimization, data mining, …

• Security – computer, personal data, 
access control, …
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The results inspire or guide further inquiry:
Discovering a visual signature for fracture energy

• Inconel 718 Charpy impact 
specimens built using additive 
manufacturing.

• Two build orientations, horizontal 
and vertical.

• Charpy impact energy depends on 
build orientation.

vertical horizontal

Build 
direction
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Can you see the difference in the fracture surfaces?
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What is the computer learning?

• CNN identified 4096 features, which were 
reduced using PCA. 50 dimensions were kept 
(60% of variance), followed by t-SNE and k-
means clustering. The computer can identify 
horizontal and vertical build fractures with 88 ±
3 % accuracy.

• What does the computer see that we cannot?
• Does the distinguishing visual information 

provide physical insight?
• Has the computer learned fracture mechanics?

A. R. Kitahara, et al., IMMI 7 148-156  (2018)
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The results inspire or guide further inquiry

• Reconsider the spoon

• The top 5 Google Images of chocolate sauce:

• When applied with knowledge, judgment, and responsibility, 
black box results may inspire discovery.
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The results inspire or guide further inquiry

• Mining data for unforeseen 
trends

• Surrogate models for physical 
simulation

• Make good predictions from 
incomplete or subresolved data

• Active learning for efficient 
workflows

• Generate information to augment 
and extend understanding

R. Poplin, et al., Nature BME 2 158-164  (2018)
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To interpret or not to interpret…

• When is a black box OK?

– The overall cost of wrong answers is 
low.

– The method is better than all 
alternatives within its domain.

– The results inspire or guide further 
inquiry.

• When must we move past the black box?

– The goal is insight: causation, 
systematization, understanding.

"All right," said Deep Thought. "The Answer to 
the Great Question..."
"Yes..!"
"Of Life, the Universe and Everything..." said 
Deep Thought.
"Yes...!"
"Is..." said Deep Thought, and paused.
"Yes...!"
"Is..."
"Yes...!!!...?"
"Forty-two," said Deep Thought, with infinite 
majesty and calm.

―Douglas Adams, The Hitchhiker’s Guide to the 
Galaxy



NEU Defect Database Example

• We would appreciate it if you cite our works when using the database:
K. Song and Y. Yan, “A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Applied 

Surface Science, vol. 285, pp. 858-864, Nov. 2013.(paper)
• Yu He, Kechen Song, Qinggang Meng, Yunhui Yan, “An End-to-end Steel Surface Defect Detection Approach via Fusing Multiple 

Hierarchical Features,” IEEE Transactions on Instrumentation and Measurement, 2020,69(4),1493-1504..(paper) 
• Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan, Qinggang Meng, “PGA-Net: Pyramid Feature Fusion and Global Context 

Attention Network for Automated Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2020.(paper) 

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html

To run the CNN example, look for the zipped package, neu_vgg16_example-master-Feb21.zip, 
which contains a Jupyter notebook called 1.0-ark_tutorial.ipynb and the (datasets) folder of 
images with NEU-CLS.zip.
From the website for the NEU example: "In the Northeastern University (NEU) surface defect 
database, six kinds of typical surface defects of the hot-rolled steel strip are collected, i.e., rolled-
in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In) and scratches (Sc). The 
database includes 1,800 grayscale images: 300 samples each of six different kinds of typical 
surface defects."
NEU steel defect discussion, examples: https://akbarikevin.medium.com/neu-surface-defect-
dataset-with-tensorflow-api-8753c85fe783

http://www.sciencedirect.com/science/article/pii/S0169433213016437
https://ieeexplore.ieee.org/document/8709818
https://ieeexplore.ieee.org/document/8930292
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Questions?


