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Recapitulation

To date, we have discussed:

Linear algebra

Linear regression: prediction

Multiple linear regression (MLR): prediction
Regular expressions

Principal component analysis (PCA)
Canonical Correlation Analysis (CCA)
Random Forest (RF)

Clustering


https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Resources

Hastie et al. Elements of Statistical Learning:
Neural Nets, starting on about p. 389

https://victorzhou.com/blog/intro-to-neural-networks
https://en.wikipedia.org/wiki/History_of artificial _neural _networks

https://scipy-
lectures.org/advanced/mathematical optimization/index.html
http://neuralnetworksanddeeplearning.com/chapl.html

seems to have nice simple explanations of, e.g., perceptrons, and
what the adjustment of weights in the network accomplishes.

http://cs231n.github.io/
This appears to be a very complete set of notes on NNs, actually a
complete course.



https://victorzhou.com/blog/intro-to-neural-networks
https://scipy-lectures.org/advanced/mathematical_optimization/index.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/

NEU Defect Database Example

To run the CNN example, look for the zipped package, neu_vggl6 example-master-Feb21.zip,

which contains a Jupyter notebook called 1.0-ark_tutorial.ipynb and the (datasets) folder of
images with NEU-CLS.zip.

From the website for the NEU example: "In the Northeastern University (NEU) surface defect
database, six kinds of typical surface defects of the hot-rolled steel strip are collected, i.e., rolled-
in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In) and scratches (Sc). The

database includes 1,800 grayscale images: 300 samples each of six different kinds of typical
surface defects."

NEU steel defect discussion, examples: https://akbarikevin.medium.com/neu-surface-defect-
dataset-with-tensorflow-api-8753c85fe783

http://faculty.neu.edu.cn/yunhyan/NEU surface defect database.html

We would a%preciate it if you cite our works when using the database:

K. Song and Y. Yan, “A4 noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Applied
Surface Science, vol. 285, pp. 858-864, Nov. 2013.(paper)

Yu He, Kechen Song, Qinggang Meng, Yunhui Yan, “An End-to-end Steel Surface Defect Detection Approach via Fusing Multiple
Hierarchical Features,” IEEE Transactions on Instrumentation and Measurement, 2020,69(4),1493-1504..(paper)

Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan, Qinggang Meng, “PGA-Net: Pyramid Feature Fusion and Global Context
Attention Network for Automated Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2020.(paper)


http://www.sciencedirect.com/science/article/pii/S0169433213016437
https://ieeexplore.ieee.org/document/8709818
https://ieeexplore.ieee.org/document/8930292
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[tems of Interest

What the .yaml contains
Examine os and Path

Can someone figure out how to capture the current directory
instead of specifying the absolute path?

Use of glob for finding files with a common pattern; here *.BMP
Use of os.path.basename[].split to find sets of images

Use random.seed instead of “seed=27737"

Use of sorted() to get a unique set of defect types

Saving an image as a file output

Re-sizing the greyscale images (200x200) to match VGG16's
224x224 input with (3 channels of) RGB; use of helper function(s)
in preprocessing.py



Neural Nets

In the beginning ... animals developed nervous systems and brains.

Wikipedia: "The history of artificial neural networks (ANN) began with Warren McCulloch and Walter Pitts[1] (1943) who created a
computational model for neural networks based on algorithms called threshold logic. This model paved the way for research to split into

two approaches. One approach focused on biological processes while the other focused on the application of neural networks to
artificial intelligence."

McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical
Biophysics. 5 (4): 115-133.

1940s: Hebbian learning hypothesis based on neural plasticity, which was a form of unsupervised learning. Turing invented the B-type
(computing) machine. 1950s: Farley & Clark used calculators to simulate a Hebbian network. Rosenblatt created the perceptron, which is
an algorithm for pattern recognition.

1960s: The first functional network with multiple layers was described by lvakhnenko and Lapa in 1965. However, research slowed after
Minsky & Papert pointed out that the perceptron lacked the capability to program an exclusive-OR gate. Also, it became clear that the
computers of the time lacked the power to implement large neural networks. [Wikipedia]

1970s: Werbo published the backpropagation algorithm that enabled training of multi-layer networks by distributing the error back up
through the layers via modification of weights at each node.

1980s: Connectionism arose as parallel distributed processing took hold for simulating neural processes, which contributed to the
prediction of protein structures. Otherwise, however, support vector machines and linear classifiers developed in competition with NN.

1990s: Max-pooling was introduced in 1992 that increased tolerance to deformation and least shift invariance in 3D object recognition.

2000s and onwards: since 2010, GPUs have been increasingly used e.g., for backpropagation training via max-pooling. Some used only
the sign of the error for learning to cope with the vanishing gradient problem. Hinton proposed in 2006 learning a high-level
representation with successive layers of binary or real-valued variables with a restricted Boltzmann machine to model each layer. In
2012 Ng & Dean developed a network that was able to recognize high-level concepts such as the presence of a cat in an image in an
unsupervised manner. Deployment of neural networks on a large scale for visual recognition problems became known as deep learning.
[Wikipedia: https://en.wikipedia.org/wiki/History of artificial neural networks]

Contests played a substantial role in accelerating the progress of deep learning and GPU-based implementations won many prizes for
problems such as traffic sign recognition, speech transcription, and the ImageNet Competition, for example.



Neural Nets in Materials Science

* Engineers have used (artificial)
neural networks (ANNs) for
decades. They can be used to
develop fits to data, just as we
have seen for (multiple) linear
regression, CCA, RF etc.

* ANNs developed a bad reputation
precisely because the learning
process, while often able to match
experimental data precisely,
results in a non-human
interpretable model. In other
words, it is a "black box".

* |In recent years, however, we have

"graduated" to convolutional neural
nets (CNNs) in which the
connections are sparse. Effectively,
the learning process discovers
features of images (especially) that
give a strong signal. Thus, they act as
feature selectors.

Holm has published (Science 2019)
literally a defense of the black box
for cases where developing an
explicit model is impossible. Which is
often the case with microstructural
images, i.e., the computer can be
trained to do tasks that are far
beyond what a human can do.



Neural Net — Details

* The following slides are derived from lectures
by Prof. Richard LeSar, lowa State Univ.

e Other slides are taken from a lecture given by
Prof. Marc De Graef in 2020, entitled "The Nuts

and Bolts of a Dense, Fully Connected Neural
Network".



A Neural Net

* In 1943, Warren McCulloch and Walter
Pitts developed the first mathematical
model of a neuron

* In the paper given below, they
described a simple mathematical input
model for a neuron, representing a X
single cell of the neural system that
takes inputs, processes those inputs,
and returns an output.

 This model is known as the McCulloch-
Pitts neural model.

X1

output




6O wl\ @ output

input @ f y

Xy S W2/
1. Each input is multiplied by a weight:
X1 = WiXq
X2 = W2X>

2. Weighted inputs are summed and have a bias b added to them:
) = WiX1 + wyXxy + b

3. The sum is put through an “activation function” fyielding the output y
f(wixy +wyx, +b) =y

The “neuron”’s behavior is defined by the parameters wy, w, and b and the
function f£.




sigmoid[x]

1/(1+Exp[-X]) ReLU = max(0,x)
The activation function defines
/ the output of a neuron in
terms of a local induced field.
J Activation functions give
= X neural nets non-linearity and
RelLU = rectified linear unit. expressiveness.

There are many activation
tanh(x) (x)=x functions.

However, the sigmoid and the
RelLU are very common.

|dentity




Taking f as the sigmoid function, we would
have after 1 pass
(writing X = [x1, x2] and w = (wq, wy))
y=fw-x+b)=f(wx;+wyx,+b)

1

O——w @ tput
= X1 1 outpu
1+ e—(w-x+b) |nput \ E} .
For example, let the “neuron” be defined with o Wz/

w=[1,1]and b = 0. *2

Forx = [2,3], y = 0.9933
This neuron maps [2,3] — 0.9933.

e Changing the weights and the bias will change the output of the neuron.

e Changing the activation function changes how the neuron functions.




We create a neural network by linking together

a number of neurons. Input Layer Hidden Layer Output Layer
If all the weights and biases are different, then )
we would have:

hy = f(wy - [x1,x2] + by)
hy = f(Wy - [x1, 2] + by) (%)

nrixx_, yy_, wwl_, ww2_, bb_] := N[sigmoid[wwl xx + ww2 yy + bb]]
hl=nr[(2, 3,1, 1, 0]
h2 =nr(2, 3, 1, 1, 0]

The output 01 is given by: 01 = f(W, * [hq, hy] + by) er-ritmnn 0
If all wg = w, =w, =][1,1] and by = b, = b, = 0, then we find: [2,3] = 0.8794

A hidden layer is any layer between the input layer (first) and the output layer (last).
There can be many hidden layers.

This is an example of a feedforward operation.

https://victorzhou.com/blog/intro-to-neural-networks



https://victorzhou.com/blog/intro-to-neural-networks

Consider the following dataset:

Name Weight (lbs) Height (in) Gender IngotLyer Higden'Eayer QutpIrLayer
Alice 133 65 F el
Bob 160 72 M
Charlie 152 70 M
Diana 120 60 F Re
(1) Subtract the mean of the weight and
height from the appropriate columns. Can we train a neural net as shown above to be able
(2) Use F=1 and M=0. to predict the gender based on height and weight?

The input will be the weights and heights for 4

Nerms Bieign s IWEigle ) Come e people along with their respective gender.
Alice  -8.25 1.75 1 _ o
T R ToE = B . The output will be a prediction for the gender of the
four people and a measure of error.
Charlie  10.75 3.25 0
Diana  -21.25 -6.75 1

weight = 141.25/b  height = 66.75in

https://victorzhou.com/blog/intro-to-neural-networks



https://victorzhou.com/blog/intro-to-neural-networks

Equations for each pair of weight and height: Input Layer Hidden Layer Output Layer
hyp = f(Wy - [X15 %] +b1)i = 1.4, hy = f(w;

%14, %2:] + )i =1..4, X,

Vi = f(Wsz - [Ay;, hp] +D3)i=1...4

with xziheight

wy = [wy, wa], Wy = [ws, W], Wo = [ws, W]
We will qgantify the neural net ’k\)y' calcula?ting the square Name Weight (Ibs) Height (in) Gender
error:4(yl- is the actual gender, y; is predicted.) s | Sk FEE 1
L=Y (yv; —9)? Bob  18.75 5.25 0

t=1 Charlie  10.75 3.25 0

Training is thus a minimization problem: vary Diana  21.25 475 1
{wy1, Wy, W3, Wy, Ws, W, by, by, b3} to minimize L.

weight = 141.25/b
height = 66.75in

https://victorzhou.com/blog/intro-to-neural-networks
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inf):= sigmoid[x_] :=1/ (1 +Exp[-x]) wwl =13

ww2 =13
[ = sigmoid[x] i = 1t
s
outf]= wwd = 13
l+e’™ ww5 =13
- Nr[Xxx_, yy_, wwl_, ww2_, bb_] := Chop[ N[sigmoid[wwl xx + ww2 yy + bb]]] ww6 = 1;
bl = 03

inzaz)= datl // MatrixForm b2 = 0;
Out|Z32}iMatrixForm= S
Alice -8.25 -1.75 b3 - 8;

Bob 18.75 5.25
Charlie 10.75 3.25
Diana -21.25 -6.75

Chop[Minimize[GF [xwl, xw2, xw3, xw4, xw5, xw6, xbl, xb2, xb3],
{xwl, xw2, xw3, xw4, xw5, xw6, xbl, xb2, xb3}]]

-0 ® =

In[313]=
GF [wwl_, ww2_, ww3_, wwd_, ww5_, ww6_, bbl_, bb2_, bb3_] :=
Module[{wl = wwl, w2 = W2, W3 = ww3, wd = wwd , W5 = WW5, W6 = ww6, bl = bbl, GF[-89.1732, -111.147", 161.528", -154.281, 152.525, 49.7479 , -104.725,
b2 = bb2, b3 = bb3}, 164.886, -109.99]

hl = Table[nr[datl[[i, 2]], datl[[i, 3]], wl, w2, b1], {1, 4}]}; ol
h2 = Table[nr[datl[[i, 2]], datl[[i, 3]], w3, w4, b2], {1, 4}];
ol = Table[nr[h1[[i]], h2[[i]], w5, w6, b3], (i, 4}];
mse = Sum[ (o1[[1]] -datl[[i, 4]]) "2, {i, 4}]; (1., 0, 6, 1.)
mse]

L 0, {xwl-» -89.1732, xw2 » -111.147, xw3 -» 161.528, xw4 » -154.281,
Xxw5 - 152.525, xw6 -» 49.7479, xbl » -104.725, xb2 -» 164.886, xb3 » -109.99} )

0.

LeSar trained this NN using a brute force minimization in Mathematica. The weights and biases were
varied until the loss function L = 0. The results for those parameters (indicated "w" and "b" values
enclosed by the red box) can now be used to see how well this NN works for predicting gender.




nf1ge)= test[bxl_, bx2_, wwl_, ww2_, ww3_, wwd_, ww5_, ww6_, bbl_, bb2_, bb3 ] :=
Module[{x1l = bxl, X2 = bx2, wl = wwl, W2 = ww2, W3 = Ww3, W4 = wwd , W5 = w5,
w6 = ww6, bl = bb1, b2 = bb2, b3 = bb3},
hl = nrix1, x2, wi, w2, bl};
h2 = nr[x1, x2, w3, w4, b2];
ol =nr[hl, h2, ws, w6, b3];
ol]
nion- tesfi-7, -3,]-89.17315160846633", -111.14689665817994", 161.5282636801397",

-154.28119811687068", 152.52523997462785", 49.747919848755814", -104.72488085879272",
164.88552760518735", -109.98970807864066]

- General: Exp[—852.928] is too small to represent as a normalized machine number; precision may be lost.

Oouff197)= 1.

Inf198)= Chop[tes-89.17315168846633‘ , -111.14689665817994" , 161.5282636801397" ,
-154.28119811687068" , 152.52523997462785" , 49.747919848755814 ",
-104.72488085879272" , 164.88552760518735" , - 109.98970807864066] ]

- General: 2.688071255522701607255903111'12.630208178148958+"~917 is too small to represent as a normalized machine
number; precision may be lost.

=== General: Exp[—-3086.89] is too small to represent as a normalized machine number; precision may be lost.

Out[199)= O

Height

2

4

-6

Weioght

weight = 141.251b height = 66.75in

This is a stupid way to solve this problem — we need a better way to find a minimum for the

large NNs we may need to create.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1



Computational optimization is a very large field — whole courses are taught on this subject.

The problem is that even with the hierarchical nature of the derivatives,

We will discuss here gradient methods for optimization.
n

Suppose we have a loss function defined as: L(w) = (1/n) Y. L;(w), where w is a parameter
i=1

Standard gradient descent methods would take an iterative approach using

g e e R
w =1l ow w n ;= 0w
It dL/ow > 0, w will decrease i
If dL/ow < 0, w will increase i
Doing this iteration many many times, the system will slowly approach i

the minimum of L(w)

1N is the learning rate (in ML).

in large NN, there are so many derivatives to calculate that it would be
prohibitive because computational time would explode.

https://victorzhou.com/blog/intro-to-neural-networks

. Optlmlzatlon https://scipy-lectures.org/advanced/mathematical _optimization/index.html 18



https://scipy-lectures.org/advanced/mathematical_optimization/index.html
https://victorzhou.com/blog/intro-to-neural-networks

We need to find an efficient and accurate way to vary the weights and biases to minimize the
loss function L({w})

This is an example of a computational optimization, which is a very large field. Indeed, whole
courses are taught on the subject.

We focus on an approach that depends on using the gradients of
the L({w}).

Consider the plot at the right, which is the function f(x) = x2.
Suppose the system is at x = x,, (the blue dot). The easiest

computational way to find the x that minimizes ; is to start at x = x,

and use an iterative procedure:
af
SR If df /dx > 0, x will decrease

where 7] controls the “step size”. Stop the procedure when the ifdf/dx <0, x will increase
change in x in the iteration is less than some prescribed value.

Optimization: Gradient descent methods 19



https://scipy-lectures.org/advanced/mathematical_optimization/index.html

Suppose we have a loss function defined as

Lw) = (1/n) 3 Li(w),

where w is one of the parameters.

Standard gradient descent methods would take an iterative
approach using

n
n dL;
Wew—n—=w-——)|—
7’6W niglaw

e 1 is the (step size) learning rate (in ML).

* by doing the iteration many many times, we hope that the 4 - : : :
system will approach the minimum of L(w) (as opposed to a flx,y] = sin[x/2]cos[y/2]
local minimum) X « x — ndf /dx

* There are many variants of this method (steepest descent,
conjugate gradient, etc.)

y < y—ndf/dy



https://scipy-lectures.org/advanced/mathematical_optimization/index.html

Derivatives of L with respect to weights and biases




Suppose we have data {x1, X, ¥} and we want to
find the parameters {w;, w,, b} that minimize the

loss function L(wq,w,, b) = (v — $)?, in which
¥y is the output of the neuron.

We need the derivative of L with respect to the parameters q € {w;, w,, b}. We invoke the chain
oL _ 9L 0y

rule; —

o Wherey = f(Wlxl + Wy Xo + b)

dq 9y dq

oL
(1) 39

A

2) 2

an

0y

— = xzf’(wlxl + wax; +b) = x,9(1— )

aWZ

oy _

ab

—2(y —¥).

= x1f ' (Wixy + wyx, + b) = x,9(1 — )

f'(wix; + wyx, +b) =91 — )

J) = o=
. af e ™

Since y = f(wixqy + wyxy, + b)

f'(wixy + wox, +b) = (1 —9)

. Derivatives of the loss function: 1 neuron

22



output layer input layer

W= (=20 =) X (131 = )

@ = (20 - X -P) 7T N @ output
o A input @ —v
B 5= (20 =9 x GU-) o G

At the end of each pass, we calculated the derivatives by back propagation and

: . oL
Iiterate usingw < w —n EWS




n
L = L(wy, Wy, W3, Wy, Ws,We, by, by, b3) = ) L;
i=1
AL noaL; 09;
We need — = L0
aj  j=10y;94;

with q] (S {Wl, Wy, W3, Wy, Wsg, Wg, bl,bz, bg}

Simplest case: q; € {ws, Wg, b3}.
dL;

(1) 35, — —2(yi — Y1)

n
= .Zl(yi — 9:)% for n samples {x1;, X2;, ¥i }.
1=

Input Layer

Hidden Layer

xli weight

X9 height

(2) Vi = f(Wshy; + wghy; + b3):
9; ~ ~
(@i = hy;yi(1 = 31) oL;

a9 . .
6_3\:6 = hy;;y;(1 —9;)
a9 . .

6213 =y:(1-9;)

dL;

(3)

D, = (20 = ¥)) X(hy§:(1 = )
(Z)STL; = (=2(y; — ¥1)) X (hy i (1 — ¥1)

op, = (20 =¥ X (1 = 31))

output layer  hidden layer

Derivatives of the loss function: hidden layers

Output Layer

24



- Input Layer Hidden Layer Output Layer
0L 0y;

— = ——q; € {w,,W,, W2, W,, b, b,}: input layer

aql 121 39, 04 q; € {wy, Wy, w3, Wy, by, by} inp y —
oL _ _, N ; hi; = f(W1Xi1 + WaXp; + by),

9 s =) el hai = f(Wsxy; + waxy; + by), X); height

Vi = f(Wshy; + wgwy; + b3)

9yi _ 03i 0hy; 9yi 5) output layer hidden layer  input layer

If q] € {erWZrbl}l a4, = dhy; 94 = Ohy; = W5yl(1 — Vi
ﬁ = (=2(y; = Y)wsy:(1 = ¥))(x1;h1; (1 = hyy))

Ohy; oh dh
= xhy (1= hyy), S0 = x5y (1= hyy); S25= hy(1— hyy) ~ ~ ~
T . T S = (20 = 9D s (1 = P (arhai(1 = hyp))
i o = (20 = Y)) (wsyi(1 = ¥i)) (hyi (1 = hyy))
Vi _ 0Yi 2i Vi __ 5 !
If q; € {ws, wy, by}, 9q;  Dhyg 24 = Bty =we¥i(1—9) output layer  hidden layer  input layer
oty ahm ahu —- = (=20 = Yi))Weyi(1 — Y)) (x1:h2; (1 — hyy))
ET X1:h2i (1 — hyy), = X212 (1 = hyy); = hy (1 - hzi)

—t = (=2 = YD) WeYi (1 — Y1) (xz1h2; (1 — hy;))

aw

@ = (=2 = Y1) We¥: (1 — ;) (hy; (1 — hy;))

. Derivatives of the loss function: hidden layers 25



output layer  hidden layers input layer

oL ik " X X
T _21(_2(yi — YDIWwsP: (1 — 9;)) ... [(xq:h1; (1 — hyy))
L=
This is called "backpropagation” — we work backwards in the network to calculate the

derivatives — the derivatives reflect the network at all layers of the NN.

However, since the needed information has already been calculated, from a computer’s
perspective, this just requires a certain amount of bookkeeping, and a lot of calculations.

However:
e All hidden layers are included in the derivative — there could be many.
* The number of data points n could be very large.
* Doing a full gradient minimization with all these derivatives might (depending on the
number of hidden layers and n) be computationally prohibitive.

Derivatives of the loss function: hidden layers 26
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in131}:= deriv[wwl_, ww2_, ww3_, wwé4_, ww5_, ww6_, bbl_, bb2_, bb3_] :=
Module[{wl = wwl, w2 = ww2, w3 = ww3, w4 = ww4, w5 = ww5, w6 = ww6, bl = bb.

b2 = bb2, b3 = bb3}, deriv[1l,1,1,1,1,1, 0, 0, 0] T
hl = Table[nr[datl[[i, 2]], datl[[i, 3]], wl, w2, b1], {i, 4}]; {0.000095278, 0.0000203596, -0.0000111946, 0.000095278, 3
h2 = Table[nr[datl[[i, 2]], datl[[i, 3]1, w3, w4, b2], {i, 4}1; 0.0000203596, -0.0000111946, 0.369901, 0.369901, -0.130076}
yhat = Table[nr[h1[[i]], h2[[i]], w5, w6, b3], {i, 4}]; ]
mse = Sum[ (yhat[[i]] -dat1[[i, 4]]) *2, {i, 4}]1; deriv[-89.17315160846633", -111.14689665817994", 161.5282636801397", Y
(» all 9 derivatives x) -154.28119811687068", 152.52523997462785" , 49.747919848755814 ",

(* dL/dy =x) -104.72488085879272", 164.88552760518735", -109.98970807864066] |
dfl=-2Table[datl[[]j, 4]]1- yhat[[j]1], {J, 4}1; -+ General: Exp[—825.461] is too small to represent as a normalized machine number; precision may be lost. §
§% M5y WE, B W) i 3 : i -+ General: 9.112293527438943969672684822322039'12.581633110615407%"—1026 is too small to represent as a normalized 3
dydw5 = Table[h1[[j]1] ~yhat[[j]1] (1-yhat[[j]]), {j, 4}]; machine number; precision may be lost. |
dydwé = Table[h2[[j]] ~yhat[[j]] (1 -yhat[[j]1]), {], 4}]; -+ General: 2.08860791447333720138411767518801077°12.800907904196126+"—-619 is too small to represent as a 3
dydb3 = Table[yhat[[j]] (1-yhat[[j]]), {i, 4}]1; normalized machine number; precision may be lost. |
(» wi, w2, bl ) -+ General: Further output of General::munfl will be suppressed during this calculation.
syl snoTecte [yatLUILL (mahaCLINITD G i W1 5 {0.,0.,0.,0.,0.,0.,0.,1.89107x10"%, 1.89107 x 10 ?} h
dhldwl = Table[datl[[j, 2]]«h1[[j]] (1-h1[[]1]), {3, 4}]; P T T T e ’ 1

dhldw2 = Table[datl[[j, 3]1~h1[[j]] (1-h1[[]]1]), {], 4}];
dhidbl = Table[h1[[j]] (1-h1[[j1]), {], 4}]1;

(* w3, wd, b2 x)

dydh2 = w6 Table[yhat[[j]] (1-yhat[[j]]), (i, 4}1;
dh2dw3 = Table[datl[[j, 2]]1~h2[[j]] (1 -h2[[]1]1), {3, 4}];
dh2dw4 = Table[datl[[j, 3]]1~h2[[j]] (1-h2[[]j11), {i, 4}];
dh2db2 = Table[h2[[j]] (1 -h2[[]1]), {J, 4}];

(* put it together «)

dfwl = Sum[df1[[j]] «dydhl[[j]] ~dhldwl[[j]], {], 4}];

dfw2 = Sum[df1[[j]] «dydh1[[j]] ~dhldw2[[j]1], {j, 4}];

dfbl = Sum[df1[[j]] «dydhl[[j]] <dh1ldbl[[j]1], {J, 4}];
dfw3 = Sum[df1[[j]] ~dydh2[[j]] ~dh2dw3[[j]1], {j, 4}]1;

dfw4 = Sum[df1[[j]] «dydh2[[j]] ~dh2dw4[[j]], {], 4}];
dfb2 = Sum[df1[[j]] «dydh2[[j]]«dh2db2[[j]1], {i, 4}];
dfw5 = Sum[df1[[j]] <dydw5[[j]1], {i, 4}1;

dfwé = Sum[df1[[j]] «dydw6[[j]1]1, {i, 4}]1;

dfb3 = Sum[df1[[]j]] «dydb3[[j]1], {i, 4}];

{dfwl, dfw2, dfbl, dfw3, dfw4, dfb2, dfw5, dfw6, dfb3}




Numerical optimization




In the stochastic gradient descent method, rather than do all the derivatives (referred to as
batch gradient descent), the true gradient on L(w) is approximated by a gradient taken for a

specific data point,

n dL; oL;
W W — > wWew—1

= ow
It will See all parametersin the NN, but restricts the number of derivatives to 1 out of n
samples.

As the algorithm sweeps through the training set, it performs the above update for each
training example. Several passes can be made over the training set until the algorithm
converges. If this is done, the data can be shuffled for each pass to prevent cycles.

* Choose an initial vector of parameters w and learning rate 7).
¢ Repeat until an approximate minimum is obtained:

¢ Randomly shuffle examples in the training set.
esFort=1,2,...,n,do:

cw:=w—nVQ;(w).
While fast, the gradients are very poorly captured this way.

3@  httpos://en.wikipedia.org/wiki/Stochastic_gradient descent

Optimization: Stochastic gradient descent (SGD)
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https://en.wikipedia.org/wiki/Stochastic_gradient_descent

A compromise between computing the true
gradient and the gradient at a single example is to
compute the gradient against more than one T

training example (called a "mini-batch") at each — Mini-batch gradient Descent
— Stochastic gradient descent
step.

For example, if we used a mini-batch based on m
samples (data points),

. . . Batch gradient descent Mini-batch gradient descent
Advantage: Typically networks train faster with
mini-batches. That's because we update the | 2 W
o o g \ 3 - hm\
weights after each propagation. 8| \_ : 8 Sl o
# iterations mini batch # (t)

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461



https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

In the figure, the direction of the mini-batch
gradient (green color) fluctuates much more in
comparison to the direction of the full batch
gradient (blue color). The stochastic approach (m

= 1) leads to gradients that change more often than
a mini-batch approach.

“If we compare all three optimizer[s], then every
optimizer has its own advantages and
disadvantages, [and] we can’t come to conclusions
[about] which optimizer is best, it totally depends on
datasets.”

381 a—a Stochastic

3.6F| — Mini-batch
3.4|| e=—e Batch

01 3.2
3.0

2.8
2.6}

2.4+
2.5

Batch GD

-Slowest

- Perfect gradient
Stochastic GD
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- Rough-estimate grad
Mini-batch GD
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https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
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Final comments for the intro to NN




redox potential

An iterative, multi-step process for training a neural
network, as depicted at top left, leads to an
assessment of the tradeoffs between two
competing qualities, as depicted in graph at center.
The blue line represents a so-called Pareto front,
defining the cases beyond which the materials
selection cannot be further improved. This makes it
possible to identify specific categories of promising
new materials, such as the one depicted by the
molecular diagram at right.

Neural nets in materials: an example

Neural networks facilitate optimization in the search for new

materials
Sorting through millions of possibilities, a search for battery materials delivered results in
five weeks instead of 50 years.

“As a demonstration, the team arrived at a set of the
eight most promising materials, out of nearly 3 million
candidates, for an energy storage system called a flow
battery. This culling process would have taken 50
years by conventional analytical methods, they say,
but they accomplished it in five weeks.”

https://news.mit.edu/2020/neural-networks-optimize-materials-search-0326
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"Neural networks are more flexible and can be used with both regression and
classification problems. Neural networks are good for the nonlinear dataset with a large
number of inputs such as images. Neural networks can work with any number of inputs
and layers. Neural networks have the numerical strength that can perform jobs in

parallel.”

“There are more alternative algorithms such as SVM, Decision Tree and Regression are
available that are simple, fast, easy to train, and provide better performance. Neural
networks are much more of a black box, require more time for development and
more computation power. Neural Networks requires more data than other Machine
Learning algorithms. NNs can be used only with numerical inputs and non-missing
value datasets. A well-known neural network researcher said "A neural network is
the second best way to solve any problem. The best way is to actually understand

the problem.”

https://www.datacamp.com/community/tutorials/neural-network-models-r

. Neural nets: comments
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"The science fiction writer Douglas Adams imagined the greatest computer ever
built, Deep Thought, programmed to answer the deepest question ever asked:
the Great Question of Life, the Universe, and Everything. After 7.5 million years
of processing, Deep Thought revealed its answer:” 42

“The first and most obvious case for using a black box is when the cost of a
wrong answer is low relative to the value of a correct answer. ...” Her example is
image segmentation for which Al is good, but not perfect. "Perfection is not,
however, necessary to make this system useful because the cost of a few
disputed pixels is low compared with saving the time and sanity of belabored
graduate students.”

“The second case for the black box is equally obvious but more fraught. A black
box can and should be used when it produces the best results.” Her example is
that Al enhances the ability of radiologists at detecting cancers in medical
images. While the consequences of a misidentification are high, the “black-box”
still offers the best solution (and are checked by a radiologist).

Holm, “In defense of the black box,” Science 364, 26 (2019) (on Canvas)

Interesting paper 37



Questions?




