
Data Analytics for Materials Science
27-737

A.D. (Tony) Rolle., Amit Verma, R.A. LeSar (Iowa State Univ.)

Dept. Materials Sci. Eng., Carnegie Mellon University

Neural Nets, part 1

Lecture 12
Revised: 10th Apr. 2021

Do not re-distribute these slides without instructor permission1

Recapitulation

To date, we have discussed:

Linear algebra
Linear regression: prediction
Multiple linear regression (MLR): prediction
Regular expressions
Principal component analysis (PCA)
Canonical Correlation Analysis (CCA)
Random Forest (RF)
Clustering

2

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Resources
• Hastie et al. Elements of Statistical Learning:

Neural Nets, starting on about p. 389
• https://victorzhou.com/blog/intro-to-neural-networks
• https://en.wikipedia.org/wiki/History_of_artificial_neural_networks
• https://scipy-lectures.org/advanced/mathematical_optimization/index.html
• http://neuralnetworksanddeeplearning.com/chap1.html

seems to have nice simple explanations of, e.g., perceptrons, and what the adjustment of
weights in the network accomplishes.

• http://cs231n.github.io/
This appears to be a very complete set of notes on NNs, actually a complete course.

• https://machinelearningmastery.com/neural-network-models-for-combined-
classification-and-regression/

• General description of NN: https://victorzhou.com/blog/intro-to-neural-networks
• For explaining forward and backward propagation: https://tech.trustpilot.com/forward-

and-backward-propagation-5dc3c49c9a05

https://victorzhou.com/blog/intro-to-neural-networks
https://scipy-lectures.org/advanced/mathematical_optimization/index.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/
https://machinelearningmastery.com/neural-network-models-for-combined-classification-and-regression/
https://victorzhou.com/blog/intro-to-neural-networks
https://tech.trustpilot.com/forward-and-backward-propagation-5dc3c49c9a05

NEU	Defect	Database	Example

• We would appreciate it if you cite our works when using the database:
K. Song and Y. Yan, “A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Applied

Surface Science, vol. 285, pp. 858-864, Nov. 2013.(paper)
• Yu He, Kechen Song, Qinggang Meng, Yunhui Yan, “An End-to-end Steel Surface Defect Detection Approach via Fusing Multiple

Hierarchical Features,” IEEE Transactions on Instrumentation and Measurement, 2020,69(4),1493-1504..(paper)
• Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan, Qinggang Meng, “PGA-Net: Pyramid Feature Fusion and Global Context

Attention Network for Automated Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2020.(paper)

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html

To run the CNN example, look for the zipped package, neu_vgg16_example-master-Feb21.zip,
which contains a Jupyter notebook called 1.0-ark_tutorial.ipynb and the (datasets) folder of
images with NEU-CLS.zip.
From the website for the NEU example: "In the Northeastern University (NEU) surface defect
database, six kinds of typical surface defects of the hot-rolled steel strip are collected, i.e., rolled-
in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS), inclusion (In) and scratches (Sc). The
database includes 1,800 grayscale images: 300 samples each of six different kinds of typical
surface defects."
NEU steel defect discussion, examples: https://akbarikevin.medium.com/neu-surface-defect-
dataset-with-tensorflow-api-8753c85fe783

http://www.sciencedirect.com/science/article/pii/S0169433213016437
https://ieeexplore.ieee.org/document/8709818
https://ieeexplore.ieee.org/document/8930292

Items	of	Interest
1. What the .yaml contains
2. Examine os and Path
3. Can someone figure out how to capture the current directory

instead of specifying the absolute path?
4. Use of glob for finding files with a common pattern; here *.BMP
5. Use of os.path.basename[].split to find sets of images
6. Use random.seed instead of “seed=27737”
7. Use of sorted() to get a unique set of defect types
8. Saving an image as a file output
9. Re-sizing the greyscale images (200x200) to match VGG16’s

224x224 input with (3 channels of) RGB; use of helper function(s)
in preprocessing.py

Neural	Nets
• In the beginning … animals developed nervous systems and brains.
• Wikipedia: "The history of artificial neural networks (ANN) began with Warren McCulloch and Walter Pitts[1] (1943) who created a

computational model for neural networks based on algorithms called threshold logic. This model paved the way for research to split
into two approaches. One approach focused on biological processes while the other focused on the application of neural networks to
artificial intelligence."

• McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical
Biophysics. 5 (4): 115–133.

• 1940s: Hebbian learning hypothesis based on neural plasticity, which was a form of unsupervised learning. Turing invented the B-type
(computing) machine. 1950s: Farley & Clark used calculators to simulate a Hebbian network. Rosenblatt created the perceptron, which
is an algorithm for pattern recognition.

• 1960s: The first functional network with multiple layers was described by Ivakhnenko and Lapa in 1965. However, research slowed
after Minsky & Papert pointed out that the perceptron lacked the capability to program an exclusive-OR gate. Also, it became clear that
the computers of the time lacked the power to implement large neural networks. [Wikipedia]

• 1970s: Werbo published the backpropagation algorithm that enabled training of multi-layer networks by distributing the error back up
through the layers via modification of weights at each node.

• 1980s: Connectionism arose as parallel distributed processing took hold for simulating neural processes, which contributed to the
prediction of protein structures. Otherwise, however, support vector machines and linear classifiers developed in competition with NN.

• 1990s: Max-pooling was introduced in 1992 that increased tolerance to deformation and least shift invariance in 3D object recognition.
• 2000s and onwards: since 2010, GPUs have been increasingly used e.g., for backpropagation training via max-pooling. Some used only

the sign of the error for learning to cope with the vanishing gradient problem. Hinton proposed in 2006 learning a high-level
representation with successive layers of binary or real-valued variables with a restricted Boltzmann machine to model each layer. In
2012 Ng & Dean developed a network that was able to recognize high-level concepts such as the presence of a cat in an image in an
unsupervised manner. Deployment of neural networks on a large scale for visual recognition problems became known as deep
learning. [Wikipedia: https://en.wikipedia.org/wiki/History_of_artificial_neural_networks]

• Contests played a substantial role in accelerating the progress of deep learning and GPU-based implementations won many prizes for
problems such as traffic sign recognition, speech transcription, and the ImageNet Competition, for example.

Neural	Nets	in	Materials	Science

• Engineers have used (artificial)
neural networks (ANNs) for
decades. They can be used to
develop fits to data, just as we
have seen for (multiple) linear
regression, CCA, RF etc.

• ANNs developed a bad reputation
precisely because the learning
process, while often able to match
experimental data precisely,
results in a non-human
interpretable model. In other
words, it is a "black box".

• In recent years, however, we have
"graduated" to convolutional neural
nets (CNNs) in which the
connections are sparse. Effectively,
the learning process discovers
features of images (especially) that
give a strong signal. Thus, they act as
feature selectors.

• Holm has published (Science 2019)
literally a defense of the black box
for cases where developing an
explicit model is impossible. Which is
often the case with microstructural
images, i.e., the computer can be
trained to do tasks that are far
beyond what a human can do.

Neural	Net	– Details

• The following slides are derived from lectures
by Prof. Richard LeSar, Iowa State Univ.

• Other slides are taken from a lecture given by
Prof. Marc De Graef in 2020, entitled "The
Nuts and Bolts of a Dense, Fully Connected
Neural Network".

A	Neural	Net

• In 1943, Warren McCulloch and Walter
Pi^s developed the first mathema`cal
model of a neuron

• In the paper given below, they
described a simple mathema`cal
model for a neuron, represen`ng a
single cell of the neural system that
takes inputs, processes those inputs,
and returns an output.

• This model is known as the McCulloch-
Pi^s neural model.

Slightly	Less	Basic	Neuron
• Consider a neuron with 3 inputs,
xi, each with its own weight, wi.

• If we use the weighted average
of the inputs then the output of
the neuron can only vary linearly.
This is not very useful!

• So, the trick is to add an
activation function, f, to insert
non-linearity. Despite the infinite
possibilities, only a very few are
in common use.

11Neural net: activation functions

The activation function defines
the output of a neuron in terms of
a local induced field.

Activation functions give neural
nets non-linearity and
expressiveness.

There are many activation
functions.

However, the sigmoid and the
ReLU are very commonly used.

Soon, we will add “bias” to the
output, which effectively allows
us to offset the activation
function w.r.t. to the argument

ReLU = rectified linear unit.

sigmoid[x]

Identity

Note that the derivative of the
sigmoid has a convenient form

COMMON ACTIVATION FUNCTIONS

• sigmoid

• Gaussian

• RELU

• step

• tanh

f(z) =
1

1 + e�z

f(z) = max(0, z)

f(z) = e�z2

f(z) =

⇢
1 z > 0
0 z  0

f(z) = tanh(z)
-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

sigmoid
Gaussian

RELU
step

tanh

�4

• Another view of typical Activation Functions

COMMON ACTIVATION FUNCTIONS

• sigmoid

• Gaussian

• RELU

• step

• tanh

f(z) =
1

1 + e�z

f(z) = max(0, z)

f(z) = e�z2

f(z) =

⇢
1 z > 0
0 z  0

f(z) = tanh(z)
-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

sigmoid
Gaussian

RELU
step

tanh

�4

• How the bias component helps, i.e., by varying how strong the
input must be to get output from the neuron

WHY DO WE NEED A BIAS/THRESHOLD ?

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

f(wx) =
1

1 + e�wx

w=1/2
1

2

f(0) =
1

2
. . . always . . .

-4 -2 0 2 4

0.2

0.4

0.6

0.8

1.0

f(wx+ b) =
1

1 + e�(wx+b)

b=-3/2;
w=1

b=0b=3/2

�5

Think of the bias as a sort of offset

14A neural net: steps at a “neuron”

1. Each input is multiplied by a weight:
𝑥! → 𝑤!𝑥!
𝑥" → 𝑤"𝑥"
2. Weighted inputs are summed and have a bias 𝑏 added to them:
Σ = 𝑤!𝑥! +𝑤"𝑥" + 𝑏
3. The sum is put through an “activation function” f		yielding the output 𝑦
𝑓(𝑤!𝑥! + 𝑤"𝑥" + 𝑏) → 𝑦

The neuron’s behavior is defined by the parameters 𝑤!, 𝑤" and 𝑏 and the function f	.

𝑥!

𝑥"

𝑤!

𝑤"

Σ
𝑏

𝑓 𝑦input
output

Learning means changing the weights & biases to achieve a desired result

15A neural net: simple example

Taking 𝑓 as the sigmoid function, we would
have after 1 pass
(writing 𝐱 = [𝑥!, 𝑥"] and 𝐰 = (𝑤!, 𝑤"))
𝑦 = 𝑓(𝐰 ⋅ 𝐱 + 𝑏) = 𝑓(𝑤!𝑥! +𝑤"𝑥" + 𝑏)

=
1

1 + 𝑒#(𝐰⋅𝐱())
For example, let the “neuron” be defined with
𝐰 = [1,1] and 𝑏 = 0.

For 𝐱 = [2,3], 𝑦 = 0.9933
This neuron maps [2,3] → 0.9933.

𝑥!

𝑥"

𝑤!

𝑤"
Σ

𝑏

𝑓 𝑦input
output

• Changing the weights and the bias will change the output of the neuron.

• Changing the activation function changes how the neuron functions.

16A neural net: hidden layers

We create a neural network by linking together
a number of neurons.

If all the weights and biases are different, then
we would have:
ℎ! = 𝑓(𝐰! ⋅ [𝑥!, 𝑥"] + 𝑏!)
ℎ" = 𝑓(𝐰" ⋅ [𝑥!, 𝑥"] + 𝑏")

The output 𝑜! is given by: 𝑜! = 𝑓(𝐰# ⋅ [ℎ!, ℎ"] + 𝑏#)
If all 𝐰! = 𝐰" = 𝐰𝐨 = [1,1] and 𝑏! = 𝑏" = 𝑏# = 0, then we find: [2,3] → 0.8794

A hidden layer is any layer between the input layer (first) and the output layer (last).
There can be many hidden layers.

This is an example of a feedforward operation.
https://victorzhou.com/blog/intro-to-neural-networks

https://victorzhou.com/blog/intro-to-neural-networks

The output of such a network can be
written as:

• Another view of a (fully connected) hidden layer

https://static.packt-cdn.com/products/9781789808452/graphics/7a69eb62-1d09-442b-9e0a-0f38203981a8.png

NETWORK WITH SINGLE HIDDEN LAYER
• The output of such a network can be written as:

https://static.packt-cdn.com/products/9781789808452/graphics/7a69eb62-1d09-442b-9e0a-0f38203981a8.png

wji, bj

�j

o(x) =
NX

j=1

�jf(wj · x+ bj)

• Interesting observation: let’s take the following
activation function…

f(wj · x) = eiwj ·x (with bj = 0)

i.e., the kernel for the Fourier series. . .

So, we could train this network to perform
1D discrete Fourier transforms. . . but, we have
a closed-form solution for this (much faster)

“Forward Propagation”

�10

This is known as forward propagation: of course,
one has to have a set of weights and biases.

In principle, any activation function can be used.
So, e.g., one could use exp{iw·x} (with zero bias),
which would give a Fourier series but not very
efficiently!

18A neural net: training a neural net

Consider the following dataset:

https://victorzhou.com/blog/intro-to-neural-networks

Name Weight (lbs) Height (in) Gender

Alice 133 65 F

Bob 160 72 M

Charlie 152 70 M

Diana 120 60 F

(1) Subtract the mean of the weight and
height from the appropriate columns.

(2) Use F=1 and M=0.

Name Weight (lbs) Height (in) Gender

Alice -8.25 -1.75 1

Bob 18.75 5.25 0

Charlie 10.75 3.25 0

Diana -21.25 -6.75 1

Can we train a neural net as shown above to be able
to predict the gender based on height and weight?

The input will be the weights and heights for 4
people along with their respective gender.

The output will be a prediction for the gender of the
four people and a measure of error. In this case, the
desired outcome is to minimize the error.

weight = 141.25lb height = 66.75in

https://victorzhou.com/blog/intro-to-neural-networks

19A neural net: training a neural net

Equations for each pair of weight and height:
ℎ23 = 𝑓(𝐰2 ⋅ [𝑥23 , 𝑥43] + 𝑏2)𝑖 = 1… 4, ℎ43 = 𝑓(𝐰4 ⋅
[𝑥23 , 𝑥43] + 𝑏4)𝑖 = 1… 4,

𝑦
̂
3 = 𝑓(𝐰6 ⋅ [ℎ23 , ℎ43] + 𝑏6)𝑖 = 1… 4

with
𝐰! = [𝑤!, 𝑤"], 𝐰" = [𝑤*, 𝑤+], 𝐰, = [𝑤-, 𝑤.]

https://victorzhou.com/blog/intro-to-neural-networks

We will quantify the neural net by calculating the square
error: (𝑦3 is the actual gender, 3𝑦3 is predicted.)

𝐿 = ∑
372

8
(𝑦3 − 5𝑦3)4

Training is thus a minimization problem: vary
{𝑤!, 𝑤", 𝑤*, 𝑤+, 𝑤-, 𝑤., 𝑏!, 𝑏", 𝑏*} to minimize 𝐿.
Minimizing the Mean Square Error (MSE) would be
equivalent.

Name Weight (lbs) Height (in) Gender

Alice -8.25 -1.75 1

Bob 18.75 5.25 0

Charlie 10.75 3.25 0

Diana -21.25 -6.75 1

weight = 141.25lb
height = 66.75in

𝑦
̂
3

𝑥23

𝑥43

https://victorzhou.com/blog/intro-to-neural-networks

20A neural net: training a neural net

LeSar trained this NN using a brute force minimization in Mathematica. The weights and biases were
varied until the loss function 𝐿 = 0. The results for those parameters (indicated "w" and "b" values
enclosed by the red box) can now be used to see how well this NN works for predicting gender.

𝐿 →

21A neural net: training a neural net by brute force

This is a stupid way to solve this problem — we need a better way to find a minimum for the
large NNs we may need to create.

weight = 141.25lb height = 66.75in
Weight

H
ei
gh
t

22Optimization

Computational optimization is a very large field — whole courses are taught on this subject.
• We will discuss here gradient methods for optimization.

• Suppose we have a loss function defined as: 𝐿(𝑤) = (1/𝑛) ∑
372

9
𝐿3(𝑤), where 𝑤 is a parameter

• Standard gradient descent methods would take an iterative approach using

𝑤 ← 𝑤 − 𝜂 :;
:<

= 𝑤 − =
9
∑
372

9 :;!
:<

. 𝜂 is the learning rate (in ML).

• If 𝜕𝐿/𝜕𝑤 > 0, 𝑤 will decrease
• If 𝜕𝐿/𝜕𝑤 < 0, 𝑤 will increase
• Doing this iteration many many times, the system will slowly approach

the minimum of 𝐿(𝑤)

The problem is that even with the hierarchical nature of the derivatives,
in large NNs, there are so many derivatives to calculate that it would be
prohibitive because computational time would explode.

One can think of the learning rate as a fraction of the correction that we apply in each iteration. Too
small and we never get there: too large and we oscillate around the solution.

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
https://victorzhou.com/blog/intro-to-neural-networks

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
https://victorzhou.com/blog/intro-to-neural-networks

23Optimization: Gradient descent methods

We need to find an efficient and accurate way to vary the weights and biases to minimize the
loss function 𝐿({𝑤})

This is an example of a computational optimization, which is a very large field. Indeed, whole
courses are taught on the subject.

We focus on an approach that depends on using the gradients of
the 𝐿({𝑤}).

Consider the plot at the right, which is the function 𝑓(𝑥) = 𝑥4.
Suppose the system is at 𝑥 = 𝑥> (the blue dot). The easiest
computational way to find the 𝑥 that minimizes 𝑓 is to start at 𝑥 = 𝑥>
and use an iterative procedure:

𝑥 ← 𝑥 − 𝜂 ?@
?A

,

where 𝜂 controls the “step size”. Stop the procedure when the
change in 𝑥 in the iteration is less than some prescribed value.

If 𝑑𝑓/𝑑𝑥 > 0, 𝑥 will decrease
If 𝑑𝑓/𝑑𝑥 < 0, 𝑥 will increase

https://scipy-lectures.org/advanced/mathematical_optimization/index.html

24Optimization: Gradient descent methods

Suppose we have a loss function defined as

𝐿(𝑤) = (1/𝑛) ∑
372

9
𝐿3(𝑤),

where 𝑤 is one of the parameters.

Standard gradient descent methods would take an iterative
approach using

𝑤 ← 𝑤 − 𝜂 :;
:<

= 𝑤 − =
9
∑
372

9 :;!
:<

.

• 𝜂 is the (step size) learning rate (in ML).

• by doing the iteration many many times, we hope that the
system will approach the minimum of 𝐿(𝑤) (as opposed to a
local minimum)

• There are many variants of this method (steepest descent,
conjugate gradient, etc.)

𝑓[𝑥, 𝑦] = sin[𝑥/2]cos[𝑦/2]

𝑥 ← 𝑥 − 𝜂𝑑𝑓/𝑑𝑥

𝑦 ← 𝑦 − 𝜂𝑑𝑓/𝑑𝑦

https://scipy-lectures.org/advanced/mathematical_optimization/index.html

25

Derivatives of 𝐿 with respect to weights and biases

26Derivatives of the loss function: 1 neuron

Suppose we have data {𝑥!, 𝑥", 𝑦} and we want to
find the parameters {𝑤!, 𝑤", 𝑏} that minimize the
loss function 𝐿(𝑤2 , 𝑤4 , 𝑏) = (𝑦 − 3𝑦)4, in which
,𝑦 is the output of the neuron.

We need the derivative of 𝐿 with respect to the parameters 𝑞 ∈ {𝑤!, 𝑤", 𝑏}. We invoke the chain

rule:
:;
:B
= :;

: CD
: CD
:B

, where ,𝑦 = 𝑓(𝑤2𝑥2 + 𝑤4𝑥4 + 𝑏).

(1)
:;
: CD
= −2(𝑦 − 3𝑦).

(2)
: CD
:<"

= 𝑥2𝑓E(𝑤2𝑥2 + 𝑤4𝑥4 + 𝑏) = 𝑥2 3𝑦(1 − 3𝑦)

: CD
:<#

= 𝑥4𝑓E(𝑤2𝑥2 + 𝑤4𝑥4 + 𝑏) = 𝑥4 3𝑦(1 − 3𝑦)

: CD
:F
= 𝑓E(𝑤2𝑥2 + 𝑤4𝑥4 + 𝑏) = 3𝑦(1 − 3𝑦)

𝑥!

𝑥"

𝑤!

𝑤"

Σ

𝑏

𝑓 𝑦input
output

𝑓(𝑥) =
1

1 + 𝑒GA

𝑓E(𝑥) =
𝑑𝑓
𝑑𝑥 =

𝑒GA

1 + 𝑒GA 4 = 𝑓(𝑥) 1 − 𝑓(𝑥)

𝑓E(𝑤2𝑥2 +𝑤4𝑥4 + 𝑏) = ,𝑦(1 − ,𝑦)

Since ,𝑦 = 𝑓(𝑤2𝑥2 + 𝑤4𝑥4 + 𝑏)

27Derivatives of the loss function: 1 neuron

(1) :;
:<"

= −2(𝑦 − 5𝑦) × 𝑥! 5𝑦(1 − 5𝑦)

(2) :;
:<#

= −2(𝑦 − 5𝑦) × 𝑥" 5𝑦(1 − 5𝑦)

(3)
:;
:F
= −2(𝑦 − 5𝑦) × 5𝑦(1 − 5𝑦)

𝑥!

𝑥"

𝑤!

𝑤"

Σ

𝑏

𝑓 𝑦input
output

^

output layer input layer

At the end of each pass, we calculated the derivatives by back propagation (i.e.,
working backwards from the outputs via the gradients to adjust the weights) and

iterate using 𝑤 ← 𝑤 − 𝜂 %&
%'.

28Derivatives of the loss function: hidden layers

𝐿 = 𝐿(𝑤2 , 𝑤4 , 𝑤6 , 𝑤8 , 𝑤H , 𝑤I , 𝑏2 , 𝑏4 , 𝑏6) = ∑
372

9
𝐿3 = ∑

372

9
(𝑦3 − 3𝑦3)4 for 𝑛 samples {𝑥!/ , 𝑥"/ , 𝑦/}.

We need
:;
:B$

= ∑
372

9 :;!

:D
̂
!

: CD!
:B$

with 𝑞0 ∈ {𝑤!, 𝑤", 𝑤*, 𝑤+, 𝑤-, 𝑤., 𝑏!, 𝑏", 𝑏*}.

Simplest case: 𝑞0 ∈ {𝑤-, 𝑤., 𝑏*}. .
(1)

:;!
: CD!

= −2(𝑦3 − 3𝑦3).

(2) 3𝑦3 = 𝑓(𝑤Hℎ23 + 𝑤Iℎ43 + 𝑏6):

(3) : CD!
:<&

= ℎ23 3𝑦3(1 − 3𝑦3)

: CD!
:<'

= ℎ43 3𝑦3(1 − 3𝑦3)

: CD!
:F(

= 3𝑦3(1 − 3𝑦3)

(1) :;!
:<&

= −2(𝑦/ − 5𝑦/) × ℎ!/ 5𝑦/(1 − 5𝑦/)

(2) :;!
:<'

= −2(𝑦/ − 5𝑦/) × ℎ"/ 5𝑦/(1 − 5𝑦/)

(3)
:;!
:F(

= −2(𝑦/ − 5𝑦/) × 5𝑦1(1 − 5𝑦1)

output layer hidden layer

)*
)+"

= ∑
,-.

/)*
) 01"

) 01"
)+"

𝑞, ∈ {𝑤. , 𝑤2 , 𝑤3 , 𝑤4 , 𝑏. , 𝑏2}: input layer

)*
) 01"

= −2(𝑦, − ;𝑦,) and

If 𝑞! ∈ {𝑤", 𝑤#, 𝑏"},
) 01"
)+#

=) 01"
)5$"

)5$"
)+#

⇒) 01"
)5$"

= 𝑤6 ;𝑦,(1 − ;𝑦,)

)5$"
)7$

= 𝑥.,ℎ.,(1 − ℎ.,),
)5$"
)7%

= 𝑥2,ℎ.,(1 − ℎ.,);
)5$"
)8$

= ℎ.,(1 − ℎ.,)

If 𝑞$ ∈ {𝑤%, 𝑤&, 𝑏#},
) 01"
)+#

=) 01"
)5%"

)5%"
)+#

⇒) 01"
)5%"

= 𝑤9 ;𝑦,(1 − ;𝑦,)

)5%"
)7&

= 𝑥.,ℎ2,(1 − ℎ2,),
)5%"
)7'

= 𝑥2,ℎ2,(1 − ℎ2,);
)5%"
)8%

= ℎ2,(1 − ℎ2,)

29

29

ℎ"$ = 𝑓(𝑤"𝑥$" + 𝑤#𝑥#$ + 𝑏"),
ℎ#$ = 𝑓(𝑤%𝑥"$ + 𝑤&𝑥#$ + 𝑏#),
,𝑦$ = 𝑓(𝑤'ℎ"$ + 𝑤(𝑤#$ + 𝑏%)

)*"
)7$

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) 𝑥"$ℎ"$(1 − ℎ"$)
)*"
)7%

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) 𝑥#$ℎ"$(1 − ℎ"$)
)*"
)8$

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) ℎ"$(1 − ℎ"$)

)*"
)7&

= −2(𝑦$ − ,𝑦$) 𝑤(,𝑦$(1 − ,𝑦$) 𝑥"$ℎ#$(1 − ℎ#$)
)*"
)7'

= −2(𝑦$ − ,𝑦$) 𝑤(,𝑦$(1 − ,𝑦$) 𝑥#$ℎ#$(1 − ℎ#$)
)*"
)8%

= −2(𝑦$ − ,𝑦$) 𝑤(,𝑦$(1 − ,𝑦$) ℎ#$(1 − ℎ#$)

output layer hidden layer input layer

output layer hidden layer input layer

Derivatives of the loss function: hidden layers

30

@A
@B)

= ∑
1C!

D
−2(𝑦1 − $𝑦1) 𝑤E 5𝑦1(1 − 5𝑦1) … 𝑥!1ℎ!1(1 − ℎ!1)

This is called “backpropagation” — we work backwards in the network to
calculate the derivatives — the derivatives reflect the network at all layers of the
NN.

However, since the needed information has already been calculated, from a
computer’s perspective, this just requires a certain amount of bookkeeping, and a
lot of calculations.

However:
• All hidden layers are included in the derivative — there could be many.
• The number of data points 𝑛 could be very large.
• Doing a full gradient minimization with all these derivatives might (depending

on the number of hidden layers and 𝑛) be computationally prohibitive.

hidden layersoutput layer input layer

Derivatives of the loss function: hidden layers

It is useful to consider a simpler example of how forward and backward
propagation actually work.
Briefly, NNs use an iterative process to optimize the weight and bias values.
We use the training set (of data) so that we have some known "answers" to
compare against. Forward propagation uses the inputs to calculate (with the
current weight & bias values) a new set of estimated outputs. We compute
the error signal (e.g., squared error or MSE). We then compute the gradients
(discussed in the preceding slides), i.e., rate of change of each weight/bias
value with respect to the error value. Backward propagation uses the
gradient values to update all the weight and bias values.
Link: https://tech.trustpilot.com/forward-and-backward-propagation-
5dc3c49c9a05

• Forward & Backward Propagation

Paraphrasing from the blogpost by Balász Tóth:
In the post, he walks us through a simple neural
network example and illustrate how forward and
backward propagation work. His neural network
example predicts the outcome of the logical
conjunction.
The logical conjunction (AND operator) takes two
inputs and returns one output. The function only
returns true, if both of its inputs are true. The truth
table of it looks like the figure in top right.
The neural network has 2 inputs, p and q, and one
output, the prediction of p & q. The training set
includes 2 examples out of the 4 possible examples.

• Logical AND example, P1

X1 =	[1,1]
X2 =	[0,1]

For the first training example, the desired output of
the neural network is 1, and for the second training
example, it is 0. The neural network has 2 neurons
in the input layer and 1 neuron on the output layer.
The structure looks like this on the right.
Forward propagation:
In the forward propagation, we check what the
neural network predicts for the first training
example with initial weights and bias. First, we
initialize the weights and bias randomly.
Then we calculate z, the weighted sum of
activation and bias:

• Logical AND example, P2

Then we calculate z, the weighted sum
of activation and bias: diagram on the
right
After we have z, we can apply the
activation function to it:

Output	=	s(z)

σ is the activation function. The most
common activation functions are relu,
sigmoid and tanh. In this example, we
are going to use tanh.
Output	=	tanh(0.3)	=	0.291	

• Logical AND example, P3

0.291

For the first training example, our
neural network predicted the outcome
0.291. Our desired outcome is 1. The
neural network can improve with the
learning process of backward
propagation. Before we continue with
the backward propagation, we
calculate the prediction for the second
training example, x=[0,1].
These actions give us the two results
for the forward propagation step.

• Logical AND example, P4

-0.197

• Logical AND example, P5

We can define a cost function that measures how good our neural network
performs. For an input, x, and desired output, y, we can calculate the cost of
a specific training example as the square of the difference between the
network’s output and the desired output, that is,

Ck = (Output – y)2

where k stands for the training example and the output is assumed to be the
activation of the output neuron, and y is the actual desired output. For our
training examples, the costs are the following:

C1 = (0.291 – 1)2 = 0.502; C2 = (-0.197 – 0)2 = 0.038
The total cost of a training set is the average of the individual cost functions
of the data in the training set, i.e., MSE. Here, N stands for the number of
training examples.

In our training set the MSE looks like this:
We want to improve the performance of the
neural network on the training examples, so
that we can change the weights and bias,
and hopefully, lower the total cost. We want
to know how much the specific weights and
bias affect the total cost, so we need to
calculate the partial derivatives of the total
cost with respect to the weights and bias. To
do this, we can apply the chain rule:

• Logical AND example, P6

After simplification, the parts look like this:

• Logical AND example, P7

The calculation of the partial
derivatives for the first training
example

• Logical AND example, P8

The partial derivatives for the second training
example:

Now, we calculate the partial derivatives with
respect to the total cost. Consider the first weight
(w1). The partial derivative of the total cost with
respect to w1 is the average of all the partial
derivatives of the individual cost functions with
respect to w1:

• Logical AND example, P9

We do the same calculation for the other (2nd)
weight and bias:

Then we update the weights and bias: we
multiply the partial derivatives with some
learning rate and subtract the results from the
weights and bias.
Let’s use a value of the learning rate α = 0.6

• Logical AND example, P10

Repeating this calculation with the other weight and the bias:

After updating the weights and bias,
our neural network looks like this:
Notice the new values of weights
and bias

This is the end of the first iteration of the
backward propagation. We could

continue with the forward propagation,
calculate the cost, and then go back to
the backward propagation again.

• Logical AND example, P11

Now we have to consider the possibility of multiple layers:

• MulMple Layers

• Neural Network as a Set of Connected Layers

• Network Initialization

46A neural net for regression
46

47A neural net: derivatives
47

48

Numerical optimization

49Optimization: Stochastic gradient descent (SGD)

In the stochastic gradient descent method, rather than do all the derivatives (referred to as
batch gradient descent), the true gradient on 𝐿(𝑤) is approximated by a gradient taken for a
specific data point,

𝑤 ← 𝑤 −
𝜂
𝑛
∑
!"#

$ 𝜕𝐿!
𝜕𝑤

⇒ 𝑤 ← 𝑤 − 𝜂
𝜕𝐿!
𝜕𝑤

It will see all parameters in the NN, but restricts the number of derivatives to 1 out of 𝑛
samples.
As the algorithm sweeps through the training set, it performs the above update for each
training example. Several passes can be made over the training set until the algorithm
converges. If this is done, the data can be shuffled for each pass to prevent cycles.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

While fast, the gradients are very poorly captured this way.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

50Optimization: Stochastic gradient descent (SGD)

A compromise between computing the true
gradient and the gradient at a single example is to
compute the gradient against more than one
training example (called a "mini-batch") at each
step.

For example, if we used a mini-batch based on 𝑚
samples (data points),

𝑤 ← 𝑤 −
𝜂
𝑛 ∑
!"#

$ 𝜕𝐿!
𝜕𝑤 ⇒ 𝑤 ← 𝑤 − 𝜂

𝜕𝐿!
𝜕𝑤 ⇒ 𝑤 ← 𝑤 −

𝜂
𝑚 ∑

!∈$

& 𝜕𝐿!
𝜕𝑤

Advantage: Typically networks train faster with
mini-batches. That's because we update the
weights after each propagation.

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

51Optimization: Stochastic gradient descent (SGD)

In the figure, the direction of the mini-batch
gradient (green color) fluctuates much more in
comparison to the direction of the full batch
gradient (blue color). The stochastic approach (𝑚
= 1) leads to gradients that change more often than
a mini-batch approach.

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

“If we compare all three optimizer[s], then every
optimizer has its own advantages and
disadvantages, [and] we can’t come to conclusions
[about] which optimizer is best, it totally depends on
datasets.”

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

52

Epochs, Training, Error

An epoch is one pass through the network to update the weights and biases, i.e., a
single update of the ANN. It is not feasible to predict how many epochs are required
for training. In fact, we have exactly the same problem with ANNs as with any other
fitting procedure in the sense of the risk of over-fitting. A compromise must be
made between fitting error (accuracy) and bias (validation loss) in the result.

A reasonable way to proceed is to continue to train (i.e., accumulate epochs) until
the error no longer decreases. You should split the data into a training set and a
test set (or validation set). Cross-validation means repeating the fitting with
different splits of the data. Early stopping means using the option to stop training
once the validation loss starts to increase. Patience is a hyperparameter that sets
the number of epochs to continue beyond early stopping point. Setting the
ModelCheckpoint callback (or restore_best_weights, which is a boolean value)
ensures that the best fit result is retained at the end of the “patience” set of epochs.

• Epochs, Early Stopping & Patience

https://www.codespeedy.com/how-to-choose-number-of-epochs-to-train-a-neural-network-in-keras/

This illustrates a typical (or hoped-
for!) sequence during training.
The analyst should make their
own choice as to where to stop. In
this example, the training loss
continues to decrease but ever
more slowly. The validation loss
first drops sharply and then slowly
increases. A reasonable
compromise is found at about 10
epochs in this example.

• Graph of Training vs Validation Error

https://www.geeksforgeeks.org/choose-optimal-number-of-epochs-to-train-a-neural-network-in-keras/, referencing:
https://keras.io/callbacks/

https://keras.io/datasets/

https://www.geeksforgeeks.org/choose-optimal-number-of-epochs-to-train-a-neural-network-in-keras/

In earlier slides, we discussed in general terms the concepts of
steepest descent and the use of batches.

Provided that you have enough data (not always the case!), you can
divide the training data into batches.

The method is known as mini-batch when the training set is divided up
into subsets of a fixed size. The batch size is commonly chosen to be
32, 64, 128 etc., depending (as always) on the particular problem.

Batch gradient descent is the same as the base method except that (to
speed up the process), each batch (sample) is evaluated separately
and the update is an average of the ensemble.

Stochastic gradient descent adds noise as it proceeds (just as we have
seen).

Mini-batch gradient descent is the same as the above but with a fixed
(small) batch size.

For big data problems, these approaches are forced on us by memory
limitations and compute times.

• Batch Size

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/

Pseudo-code:

model = initialization(...)
n_epochs = ...
train_data = ...
for i in n_epochs:

train_data = shuffle(train_data)
X, y = split(train_data)
predictions = predict(X, model)
error = calculate_error(y, predictions)
model = update_model(model, error)

This website has a nice example,
with code, of these concepts applied
to the MNIST dataset.

https://medium.com/@elimu.micha
el9/understanding-epochs-and-
batches-23120a04b3cb

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/

56

Final comments for the intro to NN

57Neural nets in materials: an example

https://news.mit.edu/2020/neural-networks-optimize-materials-search-0326

Neural networks facilitate optimization in the search for new
materials
Sorting through millions of possibilities, a search for battery materials delivered results in
five weeks instead of 50 years.

An iterative, multi-step process for training a neural
network, as depicted at top left, leads to an
assessment of the tradeoffs between two
competing qualities, as depicted in graph at center.
The blue line represents a so-called Pareto front,
defining the cases beyond which the materials
selection cannot be further improved. This makes it
possible to identify specific categories of promising
new materials, such as the one depicted by the
molecular diagram at right.

“As a demonstration, the team arrived at a set of the
eight most promising materials, out of nearly 3 million
candidates, for an energy storage system called a flow
battery. This culling process would have taken 50
years by conventional analytical methods, they say,
but they accomplished it in five weeks.”

https://news.mit.edu/2020/neural-networks-optimize-materials-search-0326

58Neural nets: comments

"Neural networks are more flexible and can be used with both regression and
classification problems. Neural networks are good for the nonlinear dataset with a large
number of inputs such as images. Neural networks can work with any number of inputs
and layers. Neural networks have the numerical strength that can perform jobs in
parallel.”

“There are more alternative algorithms such as SVM, Decision Tree and Regression are
available that are simple, fast, easy to train, and provide better performance. Neural
networks are much more of a black box, require more time for development and
more computation power. Neural Networks requires more data than other Machine
Learning algorithms. NNs can be used only with numerical inputs and non-missing
value datasets. A well-known neural network researcher said "A neural network is
the second best way to solve any problem. The best way is to actually understand
the problem.”

https://www.datacamp.com/community/tutorials/neural-network-models-r

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.datacamp.com/community/tutorials/neural-network-models-r

59A neural net for regression
59

60

Homework 7

Use of ANNs, Comparison with Random Forest

61Neural nets: comments

The last (!) homework (HW7) will be an exercise on implementing an ANN for
regression
- Answer general questions about neural nets
- Check that your python/conda/anaconda setup works properly for the ANN

Notebook provided based on this website:
https://machinelearningmastery.com/neural-network-models-for-combined-
classification-and-regression/

- Optimize the regression ANN to minimize MSE
- Re-run the regression with a different error measure; compare to the MSE method
- Re-run the regression with a different activation function; compare to the first result
- Compare both ANN results to your own best Random Forest result, both graphically

and in terms of the error measure
- Without having a copy of the Notebook available, follow the guidance of the website

and implement your own classification ANN
- Also compare your classification result with your own clustering analysis.

62Interesting paper

"The science fiction writer Douglas Adams imagined the greatest computer ever
built, Deep Thought, programmed to answer the deepest question ever asked:
the Great Question of Life, the Universe, and Everything. After 7.5 million years
of processing, Deep Thought revealed its answer:”

“The first and most obvious case for using a black box is when the cost of a
wrong answer is low relative to the value of a correct answer. …” Her example is
image segmentation for which AI is good, but not perfect. "Perfection is not,
however, necessary to make this system useful because the cost of a few
disputed pixels is low compared with saving the time and sanity of belabored
graduate students.”

“The second case for the black box is equally obvious but more fraught. A black
box can and should be used when it produces the best results.” Her example is
that AI enhances the ability of radiologists at detecting cancers in medical
images. While the consequences of a misidentification are high, the “black-box”
still offers the best solution (and are checked by a radiologist).

Holm, “In defense of the black box,” Science 364, 26 (2019) (on Canvas)

42

63

Questions?

