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Recapitulation

To date, we have discussed:

Linear algebra 
Linear regression: prediction
Multiple linear regression (MLR): prediction
Regular expressions
Principal component analysis (PCA)
Canonical Correlation Analysis (CCA)
Random Forest (RF)
Clustering 
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https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


Resources
• Has$e et al. Elements of Sta$s$cal Learning:

Neural Nets, star$ng on about p. 389
• h"ps://victorzhou.com/blog/intro-to-neural-networks
• h"ps://en.wikipedia.org/wiki/History_of_ar?ficial_neural_networks
• h"ps://scipy-

lectures.org/advanced/mathema?cal_op?miza?on/index.html
• h"p://neuralnetworksanddeeplearning.com/chap1.html

seems to have nice simple explana?ons of, e.g., perceptrons, and 
what the adjustment of weights in the network accomplishes.

• h"p://cs231n.github.io/
This appears to be a very complete set of notes on NNs, actually a 
complete course.

https://victorzhou.com/blog/intro-to-neural-networks
https://scipy-lectures.org/advanced/mathematical_optimization/index.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://cs231n.github.io/


NEU	Defect	Database	Example

• We would appreciate it if you cite our works when using the database:
K. Song and Y. Yan, “A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Applied 

Surface Science, vol. 285, pp. 858-864, Nov. 2013.(paper)
• Yu He, Kechen Song, Qinggang Meng, Yunhui Yan, “An End-to-end Steel Surface Defect Detection Approach via Fusing Multiple 

Hierarchical Features,” IEEE Transactions on Instrumentation and Measurement, 2020,69(4),1493-1504..(paper) 
• Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan, Qinggang Meng, “PGA-Net: Pyramid Feature Fusion and Global Context 

Attention Network for Automated Surface Defect Detection,” IEEE Transactions on Industrial Informatics, 2020.(paper) 

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html

To run the CNN example, look for the zipped package, neu_vgg16_example-master-Feb21.zip, 
which contains a Jupyter notebook called 1.0-ark_tutorial.ipynb and the (datasets) folder of 
images with NEU-CLS.zip.
From the website for the NEU example: "In the Northeastern University (NEU) surface defect 
database, six kinds of typical surface defects of the hot-rolled steel strip are collected, i.e., rolled-
in scale (RS), patches (Pa), crazing (Cr), piRed surface (PS), inclusion (In) and scratches (Sc). The 
database includes 1,800 grayscale images: 300 samples each of six different kinds of typical 
surface defects."
NEU steel defect discussion, examples: hRps://akbarikevin.medium.com/neu-surface-defect-
dataset-with-tensorflow-api-8753c85fe783

http://www.sciencedirect.com/science/article/pii/S0169433213016437
https://ieeexplore.ieee.org/document/8709818
https://ieeexplore.ieee.org/document/8930292


Items	of	Interest
1. What the .yaml contains
2. Examine os and Path
3. Can someone figure out how to capture the current directory 

instead of specifying the absolute path?
4. Use of glob for finding files with a common pattern; here *.BMP
5. Use of os.path.basename[].split to find sets of images
6. Use random.seed instead of “seed=27737”
7. Use of sorted() to get a unique set of defect types
8. Saving an image as a file output
9. Re-sizing the greyscale images (200x200) to match VGG16’s 

224x224 input with (3 channels of) RGB; use of helper function(s) 
in preprocessing.py



Neural	Nets
• In the beginning … animals developed nervous systems and brains.
• Wikipedia: "The history of ar=ficial neural networks (ANN) began with Warren McCulloch and Walter PiHs[1] (1943) who created a

computa=onal model for neural networks based on algorithms called threshold logic. This model paved the way for research to split into 
two approaches. One approach focused on biological processes while the other focused on the applica=on of neural networks to
ar=ficial intelligence."

• McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical 
Biophysics. 5 (4): 115–133.

• 1940s: Hebbian learning hypothesis based on neural plas=city, which was a form of unsupervised learning. Turing invented the B-type 
(compu=ng) machine. 1950s: Farley & Clark used calculators to simulate a Hebbian network. RosenblaH created the perceptron, which is 
an algorithm for paHern recogni=on. 

• 1960s: The first func=onal network with mul=ple layers was described by Ivakhnenko and Lapa in 1965.  However, research slowed a[er 
Minsky & Papert pointed out that the perceptron lacked the capability to program an exclusive-OR gate. Also, it became clear that the 
computers of the =me lacked the power to implement large neural networks. [Wikipedia]

• 1970s: Werbo published the backpropaga1on algorithm that enabled training of mul=-layer networks by distribu=ng the error back up 
through the layers via modifica=on of weights at each node.

• 1980s: Connec1onism arose as parallel distributed processing took hold for simula=ng neural processes, which contributed to the 
predic=on of protein structures.  Otherwise, however, support vector machines and linear classifiers developed in compe==on with NN.

• 1990s: Max-pooling was introduced in 1992 that increased tolerance to deforma=on and least shi[ invariance in 3D object recogni=on.
• 2000s and onwards: since 2010, GPUs have been increasingly used e.g., for backpropaga=on training  via max-pooling. Some used only 

the sign of the error for learning to cope with the vanishing gradient problem. Hinton proposed in 2006 learning a high-level 
representa=on with successive layers of binary or real-valued variables with a restricted Boltzmann machine to model each layer.  In 
2012 Ng & Dean developed a network that was able to recognize high-level concepts such as the presence of a cat in an image in an 
unsupervised manner. Deployment of neural  networks on a large scale for visual recogni=on problems became known as deep learning.
[Wikipedia: https://en.wikipedia.org/wiki/History_of_artificial_neural_networks]

• Contests played a substan=al role in accelera=ng the progress of deep learning and GPU-based implementa=ons won many prizes for 
problems such as traffic sign recogni=on, speech transcrip=on, and the ImageNet Compe==on, for example.  



Neural	Nets	in	Materials	Science

• Engineers have used (artificial) 
neural networks (ANNs) for 
decades.  They can be used to 
develop fits to data, just as we 
have seen for (multiple) linear 
regression, CCA, RF etc. 

• ANNs developed a bad reputation 
precisely because the learning 
process, while often able to match 
experimental data precisely, 
results in a non-human 
interpretable model.  In other 
words, it is a "black box".

• In recent years, however, we have 
"graduated" to convolu$onal neural 
nets (CNNs) in which the 
connec$ons are sparse.  Effec$vely, 
the learning process discovers 
features of images (especially) that 
give a strong signal. Thus, they act as 
feature selectors.

• Holm has published (Science 2019) 
literally a defense of the black box 
for cases where developing an 
explicit model is impossible. Which is 
oUen the case with microstructural 
images, i.e., the computer can be 
trained to do tasks that are far 
beyond what a human can do. 



Neural	Net	– Details

• The following slides are derived from lectures 
by Prof. Richard LeSar, Iowa State Univ.

• Other slides are taken from a lecture given by 
Prof. Marc De Graef in 2020, enItled "The Nuts 
and Bolts of a Dense, Fully Connected Neural 
Network".



A	Neural	Net

• In 1943, Warren McCulloch and Walter 
Pi"s developed the first mathema?cal 
model of a neuron

• In the paper given below, they 
described a simple mathema?cal 
model for a neuron, represen?ng a 
single cell of the neural system that 
takes inputs, processes those inputs, 
and returns an output.

• This model is known as the McCulloch-
Pi"s neural model.



10A neural net: steps at a “neuron”

1. Each input  is multiplied by a weight: 
𝑥! → 𝑤!𝑥!
𝑥" → 𝑤"𝑥"
2. Weighted inputs are summed and have a bias 𝑏 added to them: 
Σ = 𝑤!𝑥! +𝑤"𝑥" + 𝑏
3. The sum is put through an “activation function” f		yielding the output 𝑦
𝑓(𝑤!𝑥! + 𝑤"𝑥" + 𝑏) → 𝑦

The “neuron”’s behavior is defined by the parameters 𝑤!, 𝑤" and 𝑏 and the 
function f	.

𝑥!

𝑥"

𝑤!

𝑤"

Σ

𝑏
𝑓 𝑦input

output



11A neural net: activation functions

The activation function defines 
the output of a neuron in 
terms of a local induced field. 

Activation functions give 
neural nets non-linearity and 
expressiveness. 

There are many activation 
functions.

However, the sigmoid and the
ReLU are very common.

ReLU = rectified linear unit.

sigmoid[x]

Identity



12A neural net: simple example

Taking 𝑓 as the sigmoid function, we would 
have after 1 pass 
(writing 𝐱 = [𝑥!, 𝑥"] and 𝐰 = (𝑤!, 𝑤"))
𝑦 = 𝑓(𝐰 ⋅ 𝐱 + 𝑏) = 𝑓(𝑤!𝑥! +𝑤"𝑥" + 𝑏)

=
1

1 + 𝑒#(𝐰⋅𝐱())
For example, let the “neuron” be defined with  
𝐰 = [1,1] and 𝑏 = 0.

For 𝐱 = [2,3], 𝑦 = 0.9933
This neuron maps [2,3] → 0.9933.

𝑥!

𝑥"

𝑤!

𝑤"
Σ

𝑏

𝑓 𝑦input
output

• Changing the weights and the bias will change the output of the neuron.

• Changing the activation function changes how the neuron functions.



13A neural net: hidden layers

We create a neural network by linking together 
a number of neurons.

If all the weights and biases are different, then 
we would have: 
ℎ! = 𝑓(𝐰! ⋅ [𝑥!, 𝑥"] + 𝑏!)
ℎ" = 𝑓(𝐰" ⋅ [𝑥!, 𝑥"] + 𝑏")

The output 𝑜! is given by:   𝑜! = 𝑓(𝐰# ⋅ [ℎ!, ℎ"] + 𝑏#)
If all 𝐰! = 𝐰" = 𝐰𝐨 = [1,1] and 𝑏! = 𝑏" = 𝑏# = 0, then we find:   [2,3] → 0.8794

A hidden layer is any layer between the input layer (first) and the output layer (last).  
There can be many hidden layers.

This is an example of a feedforward operation.
https://victorzhou.com/blog/intro-to-neural-networks

https://victorzhou.com/blog/intro-to-neural-networks


14A neural net: training a neural net

Consider the following dataset:

https://victorzhou.com/blog/intro-to-neural-networks

Name Weight (lbs) Height (in) Gender

Alice 133 65 F

Bob 160 72 M

Charlie 152 70 M

Diana 120 60 F

(1) Subtract the mean of the weight and 
height from the appropriate columns. 

(2) Use F=1  and M=0.

Name Weight (lbs) Height (in) Gender

Alice -8.25 -1.75 1

Bob 18.75 5.25 0

Charlie 10.75 3.25 0

Diana -21.25 -6.75 1

Can we train a neural net as shown above to be able 
to predict the gender based on height and weight?

The input will be the weights and heights for 4 
people along with their respective gender.

The output will be a prediction for the gender of the 
four people and a measure of error.

weight = 141.25lb height = 66.75in

https://victorzhou.com/blog/intro-to-neural-networks


15A neural net: training a neural net

Equations for each pair of weight and height:
ℎ23 = 𝑓(𝐰2 ⋅ [𝑥23 , 𝑥43] + 𝑏2)𝑖 = 1… 4,    ℎ43 = 𝑓(𝐰4
⋅ [𝑥23 , 𝑥43] + 𝑏4)𝑖 = 1… 4,    

𝑦
̂
3 = 𝑓(𝐰6 ⋅ [ℎ23 , ℎ43] + 𝑏6)𝑖 = 1… 4

with
𝐰! = [𝑤!, 𝑤"],  𝐰" = [𝑤*, 𝑤+], 𝐰, = [𝑤-, 𝑤.]

https://victorzhou.com/blog/intro-to-neural-networks

We will quantify the neural net by calculating the square 
error:  (𝑦3 is the actual gender, 3𝑦3 is predicted.)

𝐿 = ∑
372

8
(𝑦3 − 5𝑦3)4

Training is thus a minimization problem: vary 
{𝑤!, 𝑤", 𝑤*, 𝑤+, 𝑤-, 𝑤., 𝑏!, 𝑏", 𝑏*} to minimize 𝐿.

Name Weight (lbs) Height (in) Gender

Alice -8.25 -1.75 1

Bob 18.75 5.25 0

Charlie 10.75 3.25 0

Diana -21.25 -6.75 1

weight = 141.25lb
height = 66.75in

𝑦
̂
3

𝑥23

𝑥43

https://victorzhou.com/blog/intro-to-neural-networks


16A neural net: training a neural net

LeSar trained this NN using a brute force minimization  in Mathematica. The weights and biases were 
varied until the loss function 𝐿 = 0.  The results for those parameters (indicated "w" and "b" values 
enclosed by the red box) can now be used to see how well this NN works for predicting gender.

𝐿 →



17A neural net: training a neural net by brute force

This is a stupid way to solve this problem — we need a better way to find a minimum for the 
large NNs we may need to create.

weight = 141.25lb height = 66.75in
Weight

H
ei
gh
t



18Optimization

Computational optimization is a very large field — whole courses are taught on this subject.
• We will discuss here gradient methods for optimization.

• Suppose we have a loss function defined as: 𝐿(𝑤) = (1/𝑛) ∑
234

5
𝐿2(𝑤), where 𝑤 is a parameter

• Standard gradient descent methods would take an iterative approach using                                               

𝑤 ← 𝑤 − 𝜂 67
68

= 𝑤 − 9
5
∑
234

5 67!
68

.     𝜂 is the learning rate (in ML).  

• If 𝜕𝐿/𝜕𝑤 > 0,  𝑤 will decrease
• If 𝜕𝐿/𝜕𝑤 < 0,  𝑤 will increase
• Doing this iteration many many times, the system will slowly approach 

the minimum of 𝐿(𝑤)

The problem is that even with the hierarchical nature of the derivatives, 
in large NNs, there are so many derivatives to calculate that it would be
prohibitive because computational time would explode.

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
https://victorzhou.com/blog/intro-to-neural-networks

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
https://victorzhou.com/blog/intro-to-neural-networks


19Optimization: Gradient descent methods

We need to find an efficient and accurate way to vary the weights and biases to minimize the 
loss function 𝐿({𝑤})

This is an example of a computational optimization, which is a very large field.  Indeed, whole 
courses are taught on the subject.

We focus on an approach that depends on using the gradients of 
the 𝐿({𝑤}).

Consider the plot at the right, which is the function 𝑓(𝑥) = 𝑥:.  
Suppose the system is at 𝑥 = 𝑥; (the blue dot).  The easiest 
computational way to find the 𝑥 that minimizes 𝑓 is to start at 𝑥 = 𝑥;
and use an iterative procedure: 

𝑥 ← 𝑥 − 𝜂 <=
<>

, 

where 𝜂 controls the “step size”. Stop the procedure when the 
change in 𝑥 in the iteration is less than some prescribed value.

If 𝑑𝑓/𝑑𝑥 > 0,  𝑥 will decrease
If 𝑑𝑓/𝑑𝑥 < 0,  𝑥 will increase

https://scipy-lectures.org/advanced/mathematical_optimization/index.html


20Optimization: Gradient descent methods

Suppose we have a loss function defined as 

𝐿(𝑤) = (1/𝑛) ∑
234

5
𝐿2(𝑤), 

where 𝑤 is one of the parameters.

Standard gradient descent methods would take an iterative 
approach using  

𝑤 ← 𝑤 − 𝜂 67
68

= 𝑤 − 9
5
∑
234

5 67!
68

.     

• 𝜂 is the (step size) learning rate (in ML).  

• by doing the iteration many many times, we hope that the 
system will approach the minimum of 𝐿(𝑤) (as opposed to a 
local minimum)

• There are many variants of this method (steepest descent, 
conjugate gradient, etc.)

𝑓[𝑥, 𝑦] = sin[𝑥/2]cos[𝑦/2]

𝑥 ← 𝑥 − 𝜂𝑑𝑓/𝑑𝑥

𝑦 ← 𝑦 − 𝜂𝑑𝑓/𝑑𝑦

https://scipy-lectures.org/advanced/mathematical_optimization/index.html
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Derivatives of 𝐿 with respect to weights and biases



22Derivatives of the loss function: 1 neuron

Suppose we have data {𝑥!, 𝑥", 𝑦} and we want to 
find the parameters {𝑤!, 𝑤", 𝑏} that minimize the 
loss function  𝐿(𝑤4 , 𝑤: , 𝑏) = (𝑦 − 3𝑦):, in which 
,𝑦 is the output of the neuron.

We need the derivative of 𝐿 with respect to the parameters 𝑞 ∈ {𝑤!, 𝑤", 𝑏}.  We invoke the chain 

rule:   
67
6?
= 67

6 @A
6 @A
6?

, where ,𝑦 = 𝑓(𝑤4𝑥4 + 𝑤:𝑥: + 𝑏).

(1)
67
6 @A
= −2(𝑦 − 3𝑦).    

(2)
6 @A
68"

= 𝑥4𝑓B(𝑤4𝑥4 + 𝑤:𝑥: + 𝑏) = 𝑥4 3𝑦(1 − 3𝑦)

6 @A
68#

= 𝑥:𝑓B(𝑤4𝑥4 + 𝑤:𝑥: + 𝑏) = 𝑥: 3𝑦(1 − 3𝑦)

6 @A
6C
= 𝑓B(𝑤4𝑥4 + 𝑤:𝑥: + 𝑏) = 3𝑦(1 − 3𝑦)

𝑥!

𝑥"

𝑤!

𝑤"

Σ

𝑏

𝑓 𝑦input
output

^

𝑓(𝑥) =
1

1 + 𝑒D>

𝑓B(𝑥) =
𝑑𝑓
𝑑𝑥 =

𝑒D>

1 + 𝑒D> : = 𝑓(𝑥) 1 − 𝑓(𝑥)

𝑓B(𝑤4𝑥4 +𝑤:𝑥: + 𝑏) = ,𝑦(1 − ,𝑦)

Since ,𝑦 = 𝑓(𝑤4𝑥4 + 𝑤:𝑥: + 𝑏)



23Derivatives of the loss function: 1 neuron

(1) 67
68"

= −2(𝑦 − 3𝑦) × 𝑥! 3𝑦(1 − 3𝑦)

(2) 67
68#

= −2(𝑦 − 3𝑦) × 𝑥" 3𝑦(1 − 3𝑦)

(3)
67
6C
= −2(𝑦 − 3𝑦) × 3𝑦(1 − 3𝑦)

𝑥!

𝑥"

𝑤!

𝑤"
Σ

𝑏

𝑓 𝑦input
output

^

output layer input layer

At the end of each pass, we calculated the derivatives by back propagation and 

iterate using 𝑤 ← 𝑤 − 𝜂 %&
%'.



24Derivatives of the loss function: hidden layers

𝐿 = 𝐿(𝑤4 , 𝑤: , 𝑤E , 𝑤F , 𝑤G , 𝑤H , 𝑏4 , 𝑏: , 𝑏E) = ∑
234

5
𝐿2 = ∑

234

5
(𝑦2 − 3𝑦2): for 𝑛 samples {𝑥!/ , 𝑥"/ , 𝑦/}.

We need 
67
6?$

= ∑
234

5 67!

6A
̂
!

6 @A!
6?$

with 𝑞0 ∈ {𝑤!, 𝑤", 𝑤*, 𝑤+, 𝑤-, 𝑤., 𝑏!, 𝑏", 𝑏*}.

Simplest case:  𝑞0 ∈ {𝑤-, 𝑤., 𝑏*}.                                 .   
(1)

67!
6 @A!

= −2(𝑦2 − 3𝑦2).    

(2) 3𝑦2 = 𝑓(𝑤Gℎ42 + 𝑤Hℎ:2 + 𝑏E):

(3) 6 @A!
68&

= ℎ42 3𝑦2(1 − 3𝑦2)

6 @A!
68'

= ℎ:2 3𝑦2(1 − 3𝑦2)

6 @A!
6C(

= 3𝑦2(1 − 3𝑦2)

(1) 67!
68&

= −2(𝑦/ − 3𝑦/) × ℎ!/ 3𝑦/(1 − 3𝑦/)

(2) 67!
68'

= −2(𝑦/ − 3𝑦/) × ℎ"/ 3𝑦/(1 − 3𝑦/)

(3)
67!
6C(

= −2(𝑦/ − 3𝑦/) × 3𝑦1(1 − 3𝑦1)

output layer hidden layer



)*
)+"

= ∑
,-.

/ )*
) 01"

) 01"
)+"

𝑞, ∈ {𝑤. , 𝑤2 , 𝑤3 , 𝑤4 , 𝑏. , 𝑏2}: input layer

)*
) 01"

= −2(𝑦, − ;𝑦,) and 

If 𝑞! ∈ {𝑤", 𝑤#, 𝑏"},
) 01"
)+#

= ) 01"
)5$"

)5$"
)+#

⇒ ) 01"
)5$"

= 𝑤6 ;𝑦,(1 − ;𝑦,)

)5$"
)7$

= 𝑥.,ℎ.,(1 − ℎ.,),
)5$"
)7%

= 𝑥2,ℎ.,(1 − ℎ.,);
)5$"
)8$

= ℎ.,(1 − ℎ.,)

If 𝑞$ ∈ {𝑤%, 𝑤&, 𝑏#},
) 01"
)+#

= ) 01"
)5%"

)5%"
)+#

⇒ ) 01"
)5%"

= 𝑤9 ;𝑦,(1 − ;𝑦,)

)5%"
)7&

= 𝑥.,ℎ2,(1 − ℎ2,),
)5%"
)7'

= 𝑥2,ℎ2,(1 − ℎ2,);
)5%"
)8%

= ℎ2,(1 − ℎ2,)

25

25

ℎ"$ = 𝑓(𝑤"𝑥$" + 𝑤#𝑥#$ + 𝑏"),    
ℎ#$ = 𝑓(𝑤%𝑥"$ + 𝑤&𝑥#$ + 𝑏#),    
,𝑦$ = 𝑓(𝑤'ℎ"$ + 𝑤(𝑤#$ + 𝑏%)

)*"
)7$

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) 𝑥"$ℎ"$(1 − ℎ"$)
)*"
)7%

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) 𝑥#$ℎ"$(1 − ℎ"$)
)*"
)8$

= −2(𝑦$ − ,𝑦$) 𝑤' ,𝑦$(1 − ,𝑦$) ℎ"$(1 − ℎ"$)

)*"
)7&

= −2(𝑦$ − ,𝑦$) 𝑤( ,𝑦$(1 − ,𝑦$) 𝑥"$ℎ#$(1 − ℎ#$)
)*"
)7'

= −2(𝑦$ − ,𝑦$) 𝑤( ,𝑦$(1 − ,𝑦$) 𝑥#$ℎ#$(1 − ℎ#$)
)*"
)8%

= −2(𝑦$ − ,𝑦$) 𝑤( ,𝑦$(1 − ,𝑦$) ℎ#$(1 − ℎ#$)

output layer hidden layer input layer

output layer hidden layer input layer

Derivatives of the loss function: hidden layers
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5
−2(𝑦2 − 5𝑦2) 𝑤G�̂�2(1 − �̂�2) … 𝑥42ℎ42(1 − ℎ42)

This is called “backpropagation”  — we work backwards in the network to calculate the 
derivatives — the derivatives reflect the network at all layers of the NN.

However, since the needed information has already been calculated, from a computer’s 
perspective, this just requires a certain amount of bookkeeping, and a lot of calculations.

However:
• All hidden layers are included in the derivative — there could be many. 
• The number of data points  𝑛 could be very large. 
• Doing a full gradient minimization with all these derivatives might (depending on the 

number of hidden layers and 𝑛) be computationally prohibitive.

hidden layersoutput layer input layer

Derivatives of the loss function: hidden layers
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28A neural net: derivatives
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Numerical optimization



30Optimization: Stochastic gradient descent (SGD)

In the stochastic gradient descent method, rather than do all the derivatives (referred to as 
batch gradient descent), the true gradient on 𝐿(𝑤) is approximated by a gradient taken for a 
specific data point,

𝑤 ← 𝑤 −
𝜂
𝑛
∑
234

5 𝜕𝐿2
𝜕𝑤

⇒ 𝑤 ← 𝑤 − 𝜂
𝜕𝐿2
𝜕𝑤

It will see all parameters in the NN, but restricts the number of derivatives to 1 out of 𝑛
samples.
As the algorithm sweeps through the training set, it performs the above update for each
training example. Several passes can be made over the training set until the algorithm 
converges. If this is done, the data can be shuffled for each pass to prevent cycles.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

While fast, the gradients are very poorly captured this way.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


31Optimization: Stochastic gradient descent (SGD)

A compromise between computing the true 
gradient and the gradient at a single example is to 
compute the gradient against more than one 
training example (called a "mini-batch") at each 
step.

For example, if we used a mini-batch based on 𝑚
samples (data points), 

𝑤 ← 𝑤 −
𝜂
𝑛 ∑
!"#

$ 𝜕𝐿!
𝜕𝑤 ⇒ 𝑤 ← 𝑤 − 𝜂

𝜕𝐿!
𝜕𝑤 ⇒ 𝑤 ← 𝑤 −

𝜂
𝑚 ∑

!∈$

& 𝜕𝐿!
𝜕𝑤

Advantage:  Typically networks train faster with 
mini-batches. That's because we update the 
weights after each propagation.

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461


32Optimization: Stochastic gradient descent (SGD)

In the figure, the direction of the mini-batch 
gradient (green color) fluctuates much more in 
comparison to the direction of the full batch 
gradient (blue color).  The stochastic approach (𝑚
= 1) leads to gradients that change more often than 
a mini-batch approach.

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461

“If we compare all three optimizer[s], then every 
optimizer has its own advantages and 
disadvantages, [and] we can’t come to conclusions 
[about] which optimizer is best, it totally depends on 
datasets.”

https://medium.com/@sweta.nit/batch-mini-batch-and-stochastic-gradient-descent-e9bc4cacd461
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Final comments for the intro to NN



34Neural nets in materials: an example

https://news.mit.edu/2020/neural-networks-optimize-materials-search-0326

Neural networks facilitate optimization in the search for new 
materials
Sorting through millions of possibilities, a search for battery materials delivered results in 
five weeks instead of 50 years.

An iterative, multi-step process for training a neural 
network, as depicted at top left, leads to an 
assessment of the tradeoffs between two 
competing qualities, as depicted in graph at center. 
The blue line represents a so-called Pareto front, 
defining the cases beyond which the materials 
selection cannot be further improved. This makes it 
possible to identify specific categories of promising 
new materials, such as the one depicted by the 
molecular diagram at right.

“As a demonstration, the team arrived at a set of the 
eight most promising materials, out of nearly 3 million 
candidates, for an energy storage system called a flow 
battery. This culling process would have taken 50 
years by conventional analytical methods, they say, 
but they accomplished it in five weeks.”

https://news.mit.edu/2020/neural-networks-optimize-materials-search-0326


35Neural nets: comments

"Neural networks are more flexible and can be used with both regression and 
classification problems. Neural networks are good for the nonlinear dataset with a large 
number of inputs such as images. Neural networks can work with any number of inputs 
and layers. Neural networks have the numerical strength that can perform jobs in 
parallel.”

“There are more alternative algorithms such as SVM, Decision Tree and Regression are 
available that are simple, fast, easy to train, and provide better performance. Neural 
networks are much more of a black box, require more time for development and 
more computation power. Neural Networks requires more data than other Machine 
Learning algorithms. NNs can be used only with numerical inputs and non-missing 
value datasets. A well-known neural network researcher said "A neural network is 
the second best way to solve any problem. The best way is to actually understand 
the problem.”

https://www.datacamp.com/community/tutorials/neural-network-models-r

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://www.datacamp.com/community/tutorials/neural-network-models-r


36A neural net for regression
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37Interesting paper

"The science fiction writer Douglas Adams imagined the greatest computer ever 
built, Deep Thought, programmed to answer the deepest question ever asked: 
the Great Question of Life, the Universe, and Everything. After 7.5 million years 
of processing, Deep Thought revealed its answer:”

“The first and most obvious case for using a black box is when the cost of a 
wrong answer is low relative to the value of a correct answer. …” Her example is 
image segmentation for which AI is good, but not perfect. "Perfection is not, 
however, necessary to make this system useful because the cost of a few 
disputed pixels is low compared with saving the time and sanity of belabored 
graduate students.” 

“The second case for the black box is equally obvious but more fraught. A black 
box can and should be used when it produces the best results.” Her example is 
that AI enhances the ability of radiologists at detecting cancers in medical 
images. While the consequences of a misidentification are high, the “black-box” 
still offers the best solution (and are checked by a radiologist).

Holm, “In defense of the black box,” Science 364, 26 (2019) (on Canvas)

42



38

Questions?


