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Overview
• Clustering

• Dissimilarity Index
• Examples of High Dimensional Data
• Hard Clustering Algorithms

• Hierarchical 
• K-means 
• DBSCAN 
• t-SNE

Source: Machine Learning for Materials Research Bootcamp & Workshop on Machine 
Learning Microscopy Data - https://www.nanocenter.umd.edu/events/mlmr-2020/

• Clustering by Dr. A Gilad Kusne, NIST – MD (2018)

https://www.nanocenter.umd.edu/events/mlmr-2020/


Supervised Learning
• Find the function 𝑓 that maps the input data 𝑥 to the output data 𝑦

𝑓: 𝑥 → 𝑦
• 𝑦 is continuous: Regression 
• 𝑦 is discrete: Classification 
• Cross-validation to check performance & determine parameters



Unsupervised Learning
• “Unsupervised”: We don’t have output data 𝑦 (“learning without a teacher”)
• Interested in relationship between the data 𝑥
• Learn about 𝑥 from its distribution
• Cross-validation for algorithm performance isn’t available 

• Performance checked with: Heuristics & Expert analysis 

Note: Dimension reduction is the most common application of unsupervised learning



Clustering



Where does it fit

Data Ingestion & 
Cleaning

Exploratory 
Data Analysis

RegEx Lecture Visualization

Domain 
Knowledge

Feature Engineering

Model Validation

Training vs Test Dataset
Bias vs Variance 
Underfitting vs Overfitting

(Multiple) Linear Regression
Lasso & Ridge Regularization 
Canonical Correlation Analysis
Random Forest (Decision Trees)

From Images: CNN



Clustering
• An unsupervised learning technique

• Assignment of a set of observations into subsets (called clusters), such that those within each 
cluster are more closely related than objects assigned to different clusters

• Dissimilarity Measures: quantify the dissimilarity or difference between two samples, 

𝑑 (𝑥1, 𝑥2) ↔ 𝐾 (𝑥1, 𝑥2) 

• “Specifying an appropriate dissimilarity measure is far more important in obtaining success 
with clustering than choice of clustering algorithm.” – Hastie, et al. 

• Need domain knowledge! 



Dissimilarity Measures

• Euclidean (most common) (L2): 

• Taxi-Cab (L1): 

• p-norm : 

• 1-3 dimensions

• scipy documentation: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
• Many types: geometric, statistical (in RF), information theory, feature preserving, etc.

• Algorithms are highly sensitive to scales
• Common practice to normalize / standardize the features 

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html


High Dimensional Data
• Intensity as a function of frequency, angle, location, etc.

Scale Invariant
(ignore height)

Translation 
invariant 

(ignores shifts)



Dissimilarity Matrix

Measures

• Dissimilarity Matrix – Visualization

Data from two Gaussian 
distributions, labelled by color

Unordered Dissimilarity 
matrix 𝑑 𝒙𝑖, 𝒙𝑗

Cluster-ordered 
Dissimilarity matrix

Dissimilarity (/similarity) matrix is at the core of Unsupervised Learning
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Dissimilarity (/similarity) matrix is at the core of unsupervised learning
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Data Normalization: Issues 

Normalizing data may warp the distribution and make analysis difficult

Data Standardization: Issues
• For unsupervised learning, the goal is to identify distribution 

of X
• Normalizing data may warp this distribution and make 

analysis difficult.
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Classification of (Hard) Clustering Algorithms
• Hierarchical Algorithms: find successive clusters using previously established clusters

• agglomerative (“bottom-up”) : begin with each element as a separate cluster and merge them into 
successively larger clusters

• divisive (“top-down”) : begin with the whole set and proceed to divide it into successively smaller 
clusters



Agglomerative HC

Most similar

Least similar

- Don’t need to define the number 
of clusters 

- Need dissimilarity matrix to 
define dissimilarity between 
clusters 

1. We start with assigning each 
observation to its own cluster 

2. Then, compute the similarity 
(or distance) between each of 
the clusters

3. Join the two most similar 
clusters 

4. Finally, repeat steps 2 and 3 
until there is only a single 
cluster left
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(Few) Measures of Similarity (/Distance)
s and t are combined to form cluster u. Let v be any remaining cluster in the forest that is not u. The 
following are methods for calculating the distance between the newly formed cluster u and each v.
• method = ‘single’ assigns

d(u,v) = min (dist(u[i], v[j])); for all points i in cluster u and j in cluster v

• method=‘complete’ assigns
d(u,v) = max(dist(u[i], v[j])); for all points i in cluster u and j in cluster v

• method=‘average’ assigns
d(u,v) = ∑ !(#[%],([)])

(|#|∗|(|)
; 

for all points i and j where |u| and |v| are the cardinalities of clusters u and v, respectively

Hierarchical cluster analysis

• Agglomerative hierarchical clustering
– Don’t need to define number of clusters k
– Need dissimilarity matrix
– Define dissimilarity between clusters

Average: distance 
between cluster 
centers

Complete: 
distance between 
furthest points

Single: distance 
between closest 
points

Ward: d(A, B) = 𝑊𝐴∪𝐵 −𝑊𝐴 −𝑊𝐵
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Classification of (Hard) Clustering Algorithms
• Hierarchical Algorithms: find successive clusters using previously established clusters

• agglomerative (“bottom-up”) : begin with each element as a separate cluster and merge them into 
successively larger clusters

• divisive (“top-down”) : begin with the whole set and proceed to divide it into successively smaller 
clusters

• Partitional Algorithms: determine all clusters at once (k-means); require the number of clusters 
(X-means: automatically determine the number of clusters based on BIC scores; G-means)



K-means Algorithm
• Number of clusters k is known 
• Initialize the prototype for each cluster – often picked randomly 

1. Assign each point to the nearest prototype – defining clusters 
2. Compute the mean for each cluster. 

• prototype = mean 

• Iterate (1) and (2) until convergence
• Minimizes within cluster scatter 

• Finds local minima. Repeat & choose result with lowest W



Number of Clusters?
• Classification

• Can use training data to evaluate performance
• Pick classification parameters that optimize performance 

• Clustering
• No training data
• Performance is often subjective – requires expert’s eye

• How to evaluate clustering results?
• Combinatorial clustering methods (based on data itself)

• T = sum of all distances between methods =
• T = W(C) + B (C) 

Clustering
• Combinatorial Clustering Methods

– T = Sum of all distances between points = σ𝑖,𝑗 𝑑 𝑥𝑖, 𝑥𝑗
– 𝑇 = 𝑊 𝐶 + 𝐵 𝐶 → 𝑊 𝐶 = 𝑇 − 𝐵 𝐶

𝑊 𝐶

𝐵 𝐶

𝑑 𝑥𝑖, 𝑥𝑗

Dissimilarity Matrix 
for Clustered points!

Within-Cluster
dissimilarities

Between-Cluster
dissimilarities

Minimize Within-Cluster scatter, 𝑊 𝐶

Maximize Between-cluster scatter, B 𝐶

Find cluster labels 𝐶(𝑖) so that:
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Number of Clusters?
• How to evaluate clustering results?

• Combinatorial clustering methods (based on data itself)
• T = sum of all distances between methods =
• T = W(C) + B (C) 

• Repeat clustering N times and return the result with minimum W(C)
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Number of Clusters?
• Gap Statistic 

• Heuristic based on within 
cluster scatter Wk

• !𝑘 < k
• As !𝑘 increases, more cluster centers -> 

Wk decreases
• Clustering becomes more accurate -> 

Wk decreases rapidly

Parameter Selection: How To Pick The 
Number of Clusters

• Gap Statistic
– Heuristic based on within cluster scatter𝑊𝑘

• ෠𝑘 < 𝑘:
• as ෠𝑘 increases, more cluster 

centers -> 𝑊𝑘 decreases
• Clustering becomes more 

accurate -> 𝑊𝑘 decreases 
rapidly 
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Issues with K-means Clustering
• Different cluster density
• Different cluster size



Issues with K-means Clustering
• Different cluster density
• Different cluster size
• Non-spherical Cluster 



Issues with K-means Clustering
• Different cluster density
• Different cluster size
• Non-spherical Cluster 
• Outliers 
• Empty Cluster (e.g., due to sampling)

• Some, can be addressed using Spectral Clustering
• Graph-based clustering 



Classification of (Hard) Clustering Algorithms
• Hierarchical Algorithms: find successive clusters using previously established clusters

• agglomerative (“bottom-up”) : begin with each element as a separate cluster and merge them into 
successively larger clusters

• divisive (“top-down”) : begin with the whole set and proceed to divide it into successively smaller 
clusters

• Partitional Algorithms: determine all clusters at once (k-means); require the number of clusters 
(X-means: automatically determine the number of clusters based on BIC scores; G-means)

• Density-based Algorithms: a cluster is regarded as a region in which the density of 
data objects exceeds a threshold



DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise)

• K-means and HC are suitable for compact and well-separated clusters
• Moreover, they are also severely affected by the presence of noise and outliers in the data 

• DBSCAN: Two parameters
• eps (radius): defines the neighborhood around a data point i.e., if the distance between two 

points is lower or equal to ‘eps’ then they are considered as neighbors
• MinPts: minimum number of neighbors (data points) within eps radius



DBSCAN: Pseudocode
• Core-object: if it has MinPts within Eps

Density Reachable: directly and indirectly 

• A point p is directly density-reachable 
from p2 

• p2 is directly density-reachable from p1
• p1 is directly density-reachable from q 
• p < p2 < p1 < q form a chain 

• p is (indirectly) density-reachable from q 
• q is not density-reachable from p



• Start by defining the 𝜀-neighborhood of point 𝑥𝑛 as follows:

where 𝑁𝜀 are the data points at a distance smaller than 𝜀 from 𝑥𝑛. 𝑁𝜀, therefore, is a rough estimate 
of local density. 𝑥𝑛 is considered to be a core point if at least minPts are in the neighborhood. A 
point 𝑥𝑖 is said to be density-reachable if it is in the neighborhood of a core-point.

• Until all points in 𝑋 have been visited; do
• Pick a point 𝑥𝑖 that has not been visited.
• Mark 𝑥𝑖 as visited
• If 𝑥𝑖 is a core point, then

• Find the set of all points, C, that are density reachable from 𝑥𝑖.
• C now forms a cluster. Mark all points within that cluster as having been visited.

• Return the cluster assignments C1, …, Ck, with 𝑘 the number of clusters. Points that 
have not been assigned to a cluster are considered noise/outliers.

DBSCAN: Pseudocode



• Distance matrix: minimum rotation angle 
between two (mis)orientations

• Two parameters

1. 𝜖 : an angle (in radians 0.05 for both) 
acting as the upper limit on the distance 
between two points to be in the 
neighborhood of one another; 

2. n : the minimum number of data points 
in the core of a cluster (40 for 
orientations; 10 for misorientations) 

DBSCAN: Example



• DBScan does not need to know the number of clusters in the data a priori, as opposed to K-Means.
• DBScan can find arbitrarily shaped clusters. It can even find clusters completely surrounded by

(but not connected to) a different cluster. Due to the MinPts parameter, the so-called single-link
effect (different clusters being connected by a thin line of points) is reduced.

• DBScan has a notion of noise. Outliers are labeled as Clustering.OUTLIER, which is
Integer.MAX_VALUE. (python specific comment)

• DBScan requires just two parameters and is mostly insensitive to the ordering of the points in the
database. (Only points sitting on the edge of two different clusters might swap cluster membership
if the ordering of the points is changed, and the cluster assignment is unique only up to
isomorphism.)

On the other hand, DBScan has the disadvantages of
• In high dimensional space, the data are sparse everywhere because of the curse of dimensionality.

Therefore, DBScan doesn't work well on high-dimensional data in general.
• DBScan does not respond well to data sets with varying densities.

DBSCAN: Advantages /& Disadvantages



Classification of (Hard) Clustering Algorithms
• Hierarchical Algorithms: find successive clusters using previously established clusters

• agglomerative (“bottom-up”) : begin with each element as a separate cluster and merge them into 
successively larger clusters

• divisive (“top-down”) : begin with the whole set and proceed to divide it into successively smaller 
clusters

• Partitional Algorithms: determine all clusters at once (k-means); require the number of clusters 
(X-means: automatically determine the number of clusters based on BIC scores; G-means)

• Density-based Algorithms: a cluster is regarded as a region in which the density of 
data objects exceeds a threshold

• For High-D Data: Subspace Methods: clusters that can only be seen in a projection of the data; 
both objects and features are clustered simultaneously (t-SNE)



t-SNE (t-Distributed Stochastic Neighbor Embedding)
• Means of visualizing the similarities between objects of N-dimensional space in a 2-dimensional scatterplot

• Main advantage of t-SNE is its ability to preserve local structure, which means, roughly, that points which 
are close to one another in the high-D data set will cluster with one another in the 2-D setting. 

• The algorithm models the probability distribution of neighbors around each data point. Here, the term 
neighbors refers to the set of data points which are closest to the reference data point. In the original, high-
dimensional space this is modeled as a Gaussian distribution. In the 2-dimensional output space this is 
modeled as a t-distribution.

• The goal of t-SNE is to find a mapping onto the 2-dimensional space that minimizes the differences between 
these two distributions over all points. (minimizes the sum of Kullback-Leibler divergences over all datapoints using GD)

• Within the designed function, the main parameter controlling the fitting is called perplexity. Perplexity is 
equivalent to the number of nearest neighbors considered when matching the original and fitted distributions 
for each point. 

• Hyperparameters: https://distill.pub/2016/misread-tsne/

https://distill.pub/2016/misread-tsne/


Clustering Challenges 
• Data pre-processing

• Define appropriate dissimilarity

• Selecting appropriate method
• What do you know about the data?
• What methods have been successfully used on similar data?
• Try multiple methods and visualize results

• Number of clusters
• Heuristic, e.g., Gap statistic

• Visualize Results!
• Most important check is to have an expert look at the results

Clustering: Challenges

• Data pre-processing
• Define appropriate dissimilarity
• Selecting appropriate method

– What do you know about the data?
– What methods have been successfully 

used on similar data?
– Try multiple methods and visualize results.

• Number of clusters
– Heuristic, e.g. Gap statistic

• Visualize Results!
– The most important check is to have an 

expert look at the results.



Questions


