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Introduction

There are different kinds of powders, ranging from perfectly spherical (made with highly expensive processes
such as PREP) to highly crunchy (with irregular surface morphology) and then those in between. And these
differences in powder characteristics matter a lot! Why?

Carnegie
Mellon
University )



Part | : Powder Flow in Metal Powder Bed AM

Why measure powder flow?

Two modes of powder flow occur in electron beam powder bed AM machines
® Flow from hopper (vertical)
® Build plate spreading (horizontal)

Powder flow is important because it affects layer generation capabilities which
include powder layer density, thickness, laser absorption, and thermal
conductivity.

Understanding powder flow is important for process parameter tuning.
And to understand powder flow, we must understand the particle characteristics
that affect it.
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Powder Flow in Metal Powder Bed AM

Assuming spherical particles is unrealistic leading to @ [/
incorrect flow characterization. \l
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Particle size distribution (PSD) is the standard way to
measure powders but excludes surface texture, (q)
morphology, and defects.

This results in porosity and other types of build defects

that can lead to mechanical failure.

L 50 mm 1
1 1

To avoid incorrect flow characterization and these types Representative examples of the six different powder bed anomaly

of defects, we need to better understand the physical classes (a) Recoater hopping, (b) Recoater streaking, (c) Debris,
! (d), Super-elevation, (e) Part failure, and (f) Incomplete spreading.

characteristics of powder like surface morphology, shape,  scme, Luke et o Additive Manufacturing 19 (2018): 114-126
agglomerates.
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Flowability

Characteristics of the powder feedstock such as
particle size distribution, sphericity, powder
porosity, surface texture, and internal defects
affect powder flow and performance.

To improve powder bed processes, it is important
to characterize and categorize these aspects of
powder feedstock efficiently.

Particle Size
Distribution

Morphology
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Measuring Flowability

* Hall Flowmeter- This is a fairly simple instrument but is ineffective in accurately representing powder flow
in an AM machine.

* FT4 Rheometer- It better represents powder flow through parameters, like BFE and SE, that mimic powder
flow across the build plate and through the hopper.

* Granudrum- The dynamic measurement of the angle of repose is linked to cohesion, which is an important
factor that determined spreadability.

......
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Methods: Flow Properties from Rheometer

BFE

Cylindrical vessel

Twisted Blade

—— Compressibility
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Methods: Flow Properties from Rheometer

BFE

* BFE: Basic Flowability Energy is the
measure of the powder’s flowability in
forced flow conditions.

or behavior during roller compaction.
e Cohesion is measured from shear tests.

* SE: Specific Energy is the measure of the
powder’s flowability in unconfined flow
- conditions.
_ Rheometer oy Compressibility «  Compressibility is an indirect measure of
flowability relating to process
environments, such as storage in hoppers
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Part Il : Powder Characteristics

Sphericity Q y
// Size o o
Fingerprint 9

Agglomerates ©

SEM images
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Image Pre-Processing and Particle Labeling
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A Previous Project on
Computer Vision for Powder Classification

The following series of slides describes a project from the 2014-2016
period to use computer vision methods to classify powders. This was a
successful effort but note that a fixed set of image filters was used such
as Harris corners. This was largely the work of Brian DeCost in Prof.
Holm's group. This approach has been supplanted (for the most part) by
Convolutional Neural Nets which automate the process of determining
which filters are most effective for a given task.
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Use of non-Standard Powders in LPBF

“A Database Relating Powder <5)
Properties to Process Outcomes for Top Surface
Direct Metal AM”

America Makes supported project
2014-2016

Geometries: NIST part with 8
Cylinders Surrounding it

X

p=>

Goal: Increase the range of

Lateral Features
powders useable in Arcam and EOS Outer Edge
machines
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7 Powder Systems

14

= 7 powder systems (PS) + 1 Arcam Ti64 + 1 EOS Ti64 powders as control.
= 3 PS used for Arcam EBM and 4 PS for EOS DMLS.
= 3 different powder production processes: Gas Atomization, PREP, HDH+PS
» A wide range of particle size distributions for 7 PS.

Powder System | Material | Machine used in Mesh size Powder size (um) Powder production
#0 Arcam Control Arcam EBM -140/+325 44-105 Gas atomization

#1 Arcam EBM -120/+325 44-125 HDH+PS

#2 Arcam EBM -60/+120 125-250 PREP

#3 Ti64 EOS DMLS -170 <88 PREP

#4 EOS DMLS -200/+325 44-74 HDH+PS

#5 EOS DMLS -140/+325 44-105 “ArcamEQS Build” HDH+PS

#6 Arcam EBM -100/+325 44-149 PREP

H#7 IN718 EOS DMLS -170/+800 15-88 Gas atomization
#8 EOS Control Ti64 EOS DMLS -230/+800 15-63 Gas atomization
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Standard NIST Part,
Eight Different Powders

PS 1-70 PS 3-60

PS 4-60 PS 5-60 PS 7-60 PS 8-60
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Powder Characteristics versus Flow Behavior

Powder Size Distributions for EOS and Arcam Systems

* Gas-atomized powders generally 99.99 -
display a log-normal size
distribution?

* Log-normal distribution will appear

g9 g —

linear on adjusted cumulative i o |
2 %5
HH £ g9
probablllty p|0t 2 - = 316L SS (EOS)
% 80— » Al (EOS)
 Deviation from log-normal suggests g - ® INCONEL 718
. . . . S o Maraging Steel
sudden change in distribution < el [
(sieving) g 30- * Ti64 (EOS)
. ) 2 20- » Ti64 #2
* AISi1l0Mg powder does not deviate 3 . — -
8 10
from log normal g =
* EOSTi-6Al-4V does not follow this
1 -
trend
1 0.D. Neikov, Chapter 5 - Atomization and Granulation, In 0.1- o
Handbook of Non-Ferrous Metal Powders, edited by Neikov 1€
et al., Elsevier, Oxford, 2009, Pages 102-142 0.01-
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Types of powders to classify

Machine Material Manf. Method
ARCAM Ti-6A1-4V Plasma
Arcam Atomized
(>50um) Ti-6AI-4V #2 HDH + PS*
TI-6Al-4V #3 (Large) PREP
EOS Ti-6Al-4V Gas Atomized
EOS AISi10Mg Gas Atomized
EOS EOS 316L SS Gas Atomized
(<60um) Bl Msslel\gla raging Gas Atomized
EOS Inconel 718 Gas Atomized

*Hydride/Dehydride + Plasma Spheroidization
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Size Distribution
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Methodology: Step 1: pre-Processing of Images

e 24 images per powder system for training the system from 2 to 4 samples.
e Take SEM micrographs and perform image processing

#of ‘]:ixels #of J]:iI.El‘E
Adaptive ) S
Histogram N M Wu, |
>t (B) Nep/ oo SN u, ,'
Equalization \ [\ AW
VAV RN PN NN
Grey- Intensity — £|_|S Grey- Intensity ——
Redestributed
Clipped Pixels Carnegie
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A) Probability Histogram B) Clipped Histogram



 SIFT to find
feature
descriptor

* Clustering to find Visual Words

* Most common features

e Representative of dataset :
P Visual Words Carnegie
Not Real —Just for illustration Mellon
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Scale-Invariant Feature Transform (SIFT)

Difference of Gaussians:
Lowe, D. G. (1999), 'Object recognition from local scale-invariant
features’, ICCV, 1150-1157.

Harris-LaPlace methods

Mikolajczyk, K. & Schmid, C. (2001), 'Indexing based on scale
invariant interest points’, ICCV, 525-531.
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Difference of Gaussians

The 1999 paper by Lowe is remarkably
simple with only one equation to
indicate the numerical calculation of
derivatives. The image gradient
magnitude M;; and orientation R;; at
each point 4;; are given by:

M;j = \/(Az'j — Aig15)? + (Aij — Aij)?
Rz'j = atan? (AZJ — Az'_|_1)jJ Ai’j+1 — Azg)
The resulting derivative field is examined for maxima
and minima where at least one level of nearest neighbor

points are checked. Generally, one expects to obtain
=1,000 points from a 512x512 image.

Example given of the ability of the algorithm to find a
== Similar set of points under rotation and scaling.

Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a

subset of the keys to reduce clutter.
o



Harris-LaPlace method

The 2001 paper by Mikolajczyk & Schmid presents an
algorithm for interest point detection that is invariant
to scale changes over a significant range.

Derivatives are computed from the image (intensity)
over a range of scales (in a given image). The Harris
function is used to identify interest points at each
scale but the Laplacian is used to find commonality
between points at different scales.

One example from their paper is shown with photos
at very different angles of the same apartment block.

A significant advantage of the method is the ability to
find features at different magnifications (and
orientations) of the same object.

o
‘negie
Figure 7: Example of images taken from different view llon
points. There are 14 inliers to a robustly estimated funda-
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factor is 2.7.



Methodology: Step 2: Computer Vision Pipeline

Image Histogram
* Image Representation

e 100 features (Words)

* Feed this to SVM

* Use x2 (“chi-square”) distance to ]
compare histograms E BB 0
N
P — z,(n )]2
d(Xy,Xy) = =

2 Z_: + Ty(n)

e Support Vector Machine (SVM) to classify

powders according to powder system Carnegle
Not Real —Just for illustration MellOIl
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Support Vector Machine (SVM)

An SVM is a system for classification.

Originally developed by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in
1963 (19687 See below).

The idea is to find a way to arrange the data such that there is a hyperplane
w that separates it into two sets with a gap (“margin”) in between. The
equation for the hyperplane is w-x-6=0.

Each datapoint is a vector x (of arbitrary dimension). Associated with each
vector is a y value which (for 2 classes) is assigned -1 or +1 to indicate to
which class it belongs.

V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their C arne i e
probabilities,” Proceedings of the USSR Academy of Sciences, Vol. 181, No. 4 (1968), pp. 781-783. Translated by the g
American Mathematical Society as Soviet Mathematics, Vol. 9 (1968), pp. 915-918. MellOIl
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Support Vector Machine (SVM): 2

The diagram illustrates the
maximum-margin hyperplane and
margins for an SVM that classifies
data into two classes. The support
vectors are the points (samples)
that are situated on the edges
(margins).

The normal (vector) to the
hyperplane is not, in general, a
unit vector and its magnitude,

|lw||, is related to the size of the
margin.

7

4 2/|wl

v
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Support Vector Machine (SYM): 3

The objective is to separate all the points by finding the hyperplane. Based on the indicator
function implied by the values {-1,+1} of the y;, the desired result is
yi(wx)-b=1

For the fully separable case, it turns out that the margin is determined by the points that lie
along the edges of the margin, which is why those points are known as the support vectors.

Of course, few datasets are linearly separable in their entirety so there is a soft margin
version with a parameter A that allows the depth of the margin to be optimized.

N

1

- Zmax(O, 1 —yi(w-2; — b)) | + A|w||?
i=1

Beyond this basic analysis, modern SVM packages use

a variety of procedures to optimize the classification

such as gradient descent, sub-gradient descent, and coordinate descent (to name but a egie
few)). n
university
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Computer
Vision:
SIFT-VLAD

DeCost et al. (2017) JOM 69 456

' | I | |
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Figure 4. A schematic diagram illustrating the construction of SIFT-VLAD
microstructure representations. (a) Select oriented interest points (yellow markers)
from a powder micrograph (100 randomly selected interest points shown). (b)
Compute a SIFT descriptor (blue grid) for each interest point. (c) Cluster SIFT
descriptors (colored regions) such that SIFT descriptors (black dots) are associated
with their most similar visual word (image patches); compute a residual vector for
each visual word (white arrows). (d) Concatenate the normalized residual vectors
(red bars) of each visual word (image patches) to construct the VLAD
representation, which serves as a microstructure fingerprint.



SIFT, k-means, VLAD

Scale-invariant feature transform (SIFT) was used to quantify features
of interest in the images.

k-means clustering was used to partition 15 % of the SIFT descriptors
extracted from the training images into 32 visual words

A vector of locally aggregated descriptors (VLAD) encoding was used to
compute the difference between the description of the current image
and the center of the corresponding word.

The net result then has a dimension that is the product of the word
length and the number of words.
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Computer Vision: Confusion Matrices

Cross-validation test set Independent test set
Al-EOS 1.0 Al-EOS 1.0
In-EOS In-EOS
0.8 0.8
MS-EOS MS-EOS
9] (9]
©  SS-EOS B @ sskos B
g Ti64-EOS o g Ti64-E0S 5
+— +—
Ti64-#1 Ti64-#1
0.2 0.2
Ti64-#2 Ti64-#2
Tie4-#3 0.0 Ti64-#3 0.0
%0‘9 foo% foo(o foo% Q/O‘*) . O @0(9 foo% fooc) fooo) ((/06 w%\/ Ngg Vg;)
& Ll S AP AP S AIP SRS

predicted class predicted class

Bottom line: a computer can be trained to recognize and classify different types of powder far more
reliably than any human, based on micrographs containing many particles.

Note: anomalous microstructures are also readily identified via similar techniques. Carnegie

DeCost et al. (2017) JOM 69 456 Mellon
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Image Recognition Pipeline

Hypercolumn

o s
s :
SRR | SOl | FEEEA
Convolutional Hypercolumn
Network
Bag
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Deep Learning
Feature Visualization

Selection Extraction Carnegie
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Steel Powder Feedstock
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Steel Powder Feedstock

Segmented &
Labelled
Particles
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Steel Powder Feedstock

Segmented & Visualization of
Labelled Clustered
Particles Features
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Steel Powder Feedstock: Classes of Powder Particles
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Recap

Sphericity
Powder
SEM Images Fingerprint

— Rheometer g Compressibility

Agglomerates
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. Definitions:
Resu Its: Flowa b|||ty The Specific Energy, SE, is a measure
mBFE ®SE of how powder will flow in an
unconfined or low stress
environment.
4 The Basic Flowability Energy, BFE, is
the energy required to establish a

700 { § 35 particular flow patternin a
conditioned, precise volume of
600 % =
powder.
500 5
A: Proprietary Al Alloy
400 B: Proprietary Al Alloy
é é C: Proprietary Al Alloy
300 > D: Proprietary Al Alloy
E: Proprietary Al Alloy
20 F:IN 718 GA
G: IN 718 Spheroidized
10 = H: G after sieving
I: Tie4 HDH
0 0
A B C D F G H J

. J: Tied Standard GA

Powder System
Having a low BFE coupled with a low SE usually indicates good flow properties. Carnegie
Exceptions occur if the BFE value is low but the SE value is high, that indicates that it may M ll
be either highly cohesive or have a large number of fines. elon

900 45

800

w

BFE (mJ)

o
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(8/rw) 35

o
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Results: Flowability

4.5

Surprising
result: very

35 different

; powder
morphologies
yield similar
flow

25

(8/rw) 35

+ - 15
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Powder System MellOII
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Results: Flowability

Good Flow

Bad Flow

Raw Data

Processed data

Cohesion
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Two widely different performing powders were used to test the Granudrum with respect to its accuracy in
characterizing flowability properties, with reasonable success.
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BFE (m))

Results: Flowability

Consistency across flowability measurement
systems: Granudrum vs FT4 Rheometer
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Results: Flowability
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Powder Clusters according to Flowability

Powder Interfaces were used
to determine dynamic angle of
repose that fit the interface
with an R? of 0.98. This was
used to cluster the powders
according to their flowability.
Each point represents one
experiment run (with a
particular speed).

The misclassification between ﬂ E
EOS and HDH can be explained

by looking at their dynamic

flow angles which are quite
similar for a slower rpm (e.g.,
2) and differ significantly for
higher rpm (e.g., 12)
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Results: Flowability
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Potential to Answer AM Questions with Data Science

Fused
Splat
Spheroidal
D Satellites
Crunchy
Cratered
Oblong

Agglomerated

It is possible to identify classes of similar particle
morphology using CNNs and K-means clustering and

OGK

ROCOCQOUN

i
-

L.»loielw]e

i

HOOEO!

Quantitatively
compare powders
wn K
B B2
o
SNe Develop flow
(2 O iz coefficients for
p';! E’ =~ realistic powder
A — based simulations
O 00
Yo
m B O
IO

Establish cutoff point
for the usage of
recycled powder lots

t-SNE to visualize the data and then correlate to

flow properties
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