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Introduction
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There are different kinds of powders, ranging from perfectly spherical (made with highly expensive processes
such as PREP) to highly crunchy (with irregular surface morphology) and then those in between. And these
differences in powder characteristics matter a lot! Why?



Part I : Powder Flow in Metal Powder Bed AM

Why measure powder flow?

Two modes of powder flow occur in electron beam powder bed AM machines
• Flow from hopper (vertical)
• Build plate spreading (horizontal)

Powder flow is important because it affects layer generation capabilities which
include powder layer density, thickness, laser absorption, and thermal
conductivity.

Understanding powder flow is important for process parameter tuning.
And to understand powder flow, we must understand the particle characteristics
that affect it.
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Assuming spherical particles is unrealistic leading to
incorrect flow characterization.

Particle size distribution (PSD) is the standard way to
measure powders but excludes surface texture,
morphology, and defects.

This results in porosity and other types of build defects
that can lead to mechanical failure.

To avoid incorrect flow characterization and these types
of defects, we need to better understand the physical
characteristics of powder like surface morphology, shape,
agglomerates.

Representative examples of the six different powder bed anomaly 
classes (a) Recoater hopping, (b) Recoater streaking, (c) Debris, 
(d), Super-elevation, (e) Part failure, and (f) Incomplete spreading.
Scime, Luke et al Additive Manufacturing 19 (2018): 114-126
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Powder Flow in Metal Powder Bed AM
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Flowability

Characteristics of the powder feedstock such as
particle size distribution, sphericity, powder
porosity, surface texture, and internal defects
affect powder flow and performance.

To improve powder bed processes, it is important
to characterize and categorize these aspects of
powder feedstock efficiently.

Particle Size 
Distribution

Morphology

Porosity
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Measuring Flowability
• Hall Flowmeter- This is a fairly simple instrument but is ineffective in accurately representing powder flow 

in an AM machine.

• FT4 Rheometer- It better represents powder flow through parameters, like BFE and SE, that mimic powder 
flow across the build plate and through the hopper.

• Granudrum- The dynamic measurement of the angle of repose is linked to cohesion, which is an important 
factor that determined spreadability.
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Methods: Flow Properties from Rheometer

Rheometer

BFE

Compressibility

Cohesion

SE
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Methods: Flow Properties from Rheometer

Rheometer

BFE

Compressibility

Cohesion

SE

• BFE: Basic Flowability Energy is the 
measure of the powder’s flowability in 
forced flow conditions.

• SE: Specific Energy is the measure of the 
powder’s flowability in unconfined flow 
conditions.

• Compressibility is an indirect measure of 
flowability relating to process 
environments, such as storage in hoppers 
or behavior during roller compaction.

• Cohesion is measured from shear tests.
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Part II : Powder Characteristics

SEM images Powder 
Fingerprint

Sphericity

Size

Texture

Agglomerates
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Image Pre-Processing and Particle Labeling

Thresholded image of Steel Powder Particles are segmented and labeledSEM Prep

SEM Imaging Thresholding Particle 
Segmentation

Particle 
Labeling
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A Previous Project on 
Computer Vision for Powder Classification

The following series of slides describes a project from the 2014-2016 
period to use computer vision methods to classify powders.  This was a 
successful effort but note that a fixed set of image filters was used such 
as Harris corners.  This was largely the work of Brian DeCost in Prof. 
Holm's group.  This approach has been supplanted (for the most part) by 
Convolutional Neural Nets which automate the process of determining 
which filters are most effective for a given task.



Use of non-Standard Powders in LPBF
“A Database Relating Powder 
Properties to Process Outcomes for 
Direct Metal AM”
America Makes supported project 
2014-2016
Geometries:  NIST part with 8 
Cylinders Surrounding it 
Goal:  Increase the range of 
powders useable in Arcam and EOS 
machines



7 Powder Systems

Powder System Material Machine used in Mesh size Powder size (µm)  Powder production
#0 Arcam Control

Ti64

Arcam EBM -140/+325 44-105 Gas atomization
#1 Arcam EBM -120/+325 44-125 HDH+PS
#2 Arcam EBM -60/+120 125-250 PREP
#3 EOS DMLS -170 <88 PREP
#4 EOS DMLS -200/+325 44-74 HDH+PS
#5 EOS DMLS -140/+325 44-105 “ArcamEOS Build” HDH+PS
#6 Arcam EBM -100/+325 44-149 PREP
#7 IN718 EOS DMLS -170/+800 15-88 Gas atomization

#8 EOS Control Ti64 EOS DMLS -230/+800 15-63 Gas atomization
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§ 7 powder systems (PS) + 1 Arcam Ti64 + 1 EOS Ti64 powders as control.
§ 3 PS used for Arcam EBM and 4 PS for EOS DMLS.
§ 3 different powder production processes:  Gas Atomization, PREP, HDH+PS
§ A wide range of particle size distributions for 7 PS.  



Standard NIST Part, 
Eight Different Powders

PS 3-60

PS 4-60 PS 8-60PS 7-60PS 5-60

PS 0-70 PS 2-100PS 1-70



• Gas-atomized powders generally 
display a log-normal size 
distribution1

• Log-normal distribution will appear 
linear on adjusted cumulative 
probability plot

• Deviation from log-normal suggests 
sudden change in distribution 
(sieving)

• AlSi10Mg powder does not deviate 
from log normal

• EOS Ti-6Al-4V does not follow this 
trend

1  O.D. Neikov, Chapter 5 - Atomization and Granulation, In 
Handbook of Non-Ferrous Metal Powders, edited by Neikov
et al., Elsevier, Oxford, 2009, Pages 102-142

Powder Characteristics versus Flow Behavior



Types of powders to classify
Machine Material Manf. Method

Arcam 
(>50μm)  

ARCAM Ti-6Al-4V Plasma
Atomized

Ti-6Al-4V #2 HDH + PS*

TI-6Al-4V #3 (Large) PREP

EOS 
(<60μm) 

EOS Ti-6Al-4V Gas Atomized

EOS AlSi10Mg Gas Atomized
EOS 316L SS Gas Atomized

EOS MS1 Maraging
Steel Gas Atomized

EOS Inconel 718 Gas Atomized

*Hydride/Dehydride + Plasma Spheroidization
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Size Distribution

SEM 

Threshold

Watershed

Size 
distribution



• 24 images per powder system for training the system from 2 to 4 samples.
• Take SEM micrographs and perform image processing

Adaptive 
Histogram 
Equalization

Methodology: Step 1: pre-Processing of Images



Methodology : Step 2 : Computer Vision Pipeline

• Extract Features

• SIFT to find 
feature 
descriptor

• Clustering to find Visual Words

• Most common features 

• Representative of dataset
Visual Words

Not Real  – Just for illustration



Scale-Invariant Feature Transform (SIFT)

Difference of Gaussians:
Lowe, D. G. (1999), 'Object recognition from local scale-invariant 
features’, ICCV, 1150-1157.
Harris-LaPlace methods 
Mikolajczyk, K. & Schmid, C. (2001), 'Indexing based on scale 
invariant interest points’, ICCV, 525-531.



Difference of Gaussians
The 1999 paper by Lowe is remarkably 
simple with only one equation to 
indicate the numerical calculation of 
derivatives. The image gradient 
magnitude Mij and orientation Rij at 
each point Aij are given by:

The resulting derivative field is examined for maxima 
and minima where at least one level of nearest neighbor 
points are checked. Generally, one expects to obtain 
≈1,000 points from a 512x512 image.
Example given of the ability of the algorithm to find a 
similar set of points under rotation and scaling.

The input image is first convolved with the Gaussian
function using to give an image A. This is then
repeated a second time with a further incremental smooth-
ing of to give a new image, B, which now has an
effective smoothing of . The difference of Gaussian
function is obtained by subtracting image B from A, result-
ing in a ratio of between the two Gaussians.
To generate the next pyramid level, we resample the al-

ready smoothed image B using bilinear interpolationwith a
pixel spacing of 1.5 in each direction. While it may seem
more natural to resample with a relative scale of , the
only constraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing means that each new sample will
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.
Maxima and minima of this scale-space function are de-

termined by comparing each pixel in the pyramid to its
neighbours. First, a pixel is compared to its 8 neighbours at
the same level of the pyramid. If it is a maxima or minima
at this level, then the closest pixel location is calculated at
the next lowest level of the pyramid, taking account of the
1.5 times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for the level above. Since most pixelswill be elim-
inated within a few comparisons, the cost of this detection is
small and much lower than that of building the pyramid.
If the first level of the pyramid is sampled at the same rate

as the input image, the highest spatial frequencies will be ig-
nored. This is due to the initial smoothing, which is needed
to provide separation of peaks for robust detection. There-
fore, we expand the input image by a factor of 2, using bilin-
ear interpolation, prior to building the pyramid. This gives
on the order of 1000 key points for a typical pixel
image, compared to only a quarter as many without the ini-
tial expansion.

3.1. SIFT key stability
To characterize the image at each key location, the smoothed
image A at each level of the pyramid is processed to extract
image gradients and orientations. At each pixel, , the im-
age gradientmagnitude, , and orientation, , are com-
puted using pixel differences:

The pixel differences are efficient to compute and provide
sufficient accuracy due to the substantial level of previous
smoothing. The effective half-pixel shift in position is com-
pensated for when determining key location.
Robustness to illuminationchange is enhanced by thresh-

olding the gradient magnitudes at a value of 0.1 times the

Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.
Each key location is assigned a canonical orientation so

that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation, . The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.
The stability of the resulting keys can be tested by sub-

jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image fromknowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-
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Harris-LaPlace method

The 2001 paper by Mikolajczyk & Schmid presents an 
algorithm for interest point detection that is invariant 
to scale changes over a significant range. 

Derivatives are computed from the image (intensity) 
over a range of scales (in a given image). The Harris 
function is used to identify interest points at each 
scale but the Laplacian is used to find commonality 
between points at different scales.

One example from their paper is shown with photos 
at very different angles of the same apartment block.
A significant advantage of the method is the ability to 
find features at different magnifications (and 
orientations) of the same object.

and 176 detected points detected in the left and right im-
ages. The number of initial matches is 23 and there are 14
inliers to the robustly estimated fundamental matrix, all of
them correct. Note that the images are taken from different
viewpoints, the transformation includes a scale change, an
image rotation as well as a change in the viewing angle. The
building in the middle is almost half occluded.

Extracted interest points

Initial points matches

Inliers to the estimated homography

Figure 6: Robust matching: there are 190 and 213 points
detected in the left and right images, respectively (top). 58
points are initially matched (middle). There are 32 inliers
to the estimated homography (bottom), all of which are cor-
rect. The estimated scale factor is and the estimated
rotation angle is degrees.

In the following we show the results for retrieval from a
database with more than 5000 images. The images in the
database are extracted from 16 hours of video sequences
which include movies, sport events and news reports. Sim-
ilar images are excluded by taking one image per 300
frames. Furthermore, the database contains one image from
each of our 10 test sequences. The total number of descrip-
tors in our database is 2539342.
The second row of figure 8 shows five images of the test

sequences which are contained in the database. The top row
displays images for which the corresponding image in the

database (second row) was correctly retrieved, that is it was
the most similar one. The approximate scale factor is given
in row three. The changes between the image pairs (first and
second row) include important changes in the focal length,
for example 5.8 for the image pair (a). They also include
important changes in viewpoint, for example for pair (b).
Furthermore, they include important illumination changes
(image pair (e)).

Figure 7: Example of images taken from different view
points. There are 14 inliers to a robustly estimated funda-
mental matrix, all of them are correct. The estimated scale
factor is .

The test sequences where used to systematically evalu-
ate the performance of retrieval. Results are shown in ta-
ble 2. For each of the 10 test sequences, we have evaluated
the performance at different scale factors (1.4 to 4.4). For
each scale factor, we have evaluated the percentage that the
corresponding image is the most similar one or among the
five or ten most similar images. We can see that up to a



Methodology: Step 2: Computer Vision Pipeline

• Image Representation

• 100 features (Words)

• Feed this to SVM

Image Histogram

• Use χ2 (“chi-square”) distance to 
compare histograms

• Support Vector Machine (SVM) to classify 
powders according to powder system

Not Real  – Just for illustration



Support Vector Machine (SVM)
An SVM is a system for classification. 
Originally developed by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 
1963 (1968? See below).
The idea is to find a way to arrange the data such that there is a hyperplane 
w that separates it into two sets with a gap (“margin”) in between.  The 
equation for the hyperplane is w·x-b=0.
Each datapoint is a vector x (of arbitrary dimension). Associated with each 
vector is a y value which (for 2 classes) is assigned -1 or +1 to indicate to 
which class it belongs.

V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their 
probabilities,” Proceedings of the USSR Academy of Sciences, Vol. 181, No. 4 (1968), pp. 781–783. Translated by the 
American Mathematical Society as Soviet Mathematics, Vol. 9 (1968), pp. 915–918. 



Support Vector Machine (SVM): 2
The diagram illustrates the 
maximum-margin hyperplane and 
margins for an SVM that classifies 
data into two classes. The support 
vectors are the points (samples) 
that are situated on the edges 
(margins).

x1

x2

w·x
– b = +1

w·x
– b = 0

w·x
– b = -1

2/||w||

The normal (vector) to the 
hyperplane is not, in general, a 
unit vector and its magnitude, 
||w||, is related to the size of the 
margin.

w



Support Vector Machine (SVM): 3
The objective is to separate all the points by finding the hyperplane. Based on the indicator 
function implied by the values {-1,+1} of the yi, the desired result is

yi (w·xi) – b ≥ 1
For the fully separable case, it turns out that the margin is determined by the points that lie 
along the edges of the margin, which is why those points are known as the support vectors.

Of course, few datasets are linearly separable in their entirety so there is a soft margin 
version with a parameter l that allows the depth of the margin to be optimized.

Beyond this basic analysis, modern SVM packages use
a variety of procedures to optimize the classification
such as gradient descent, sub-gradient descent, and coordinate descent (to name but a 
few)).

"
1

n

NX

i=1
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Arcam Ti-
6Al-4V

HDH +PS 
Ti64

PREP Ti64 EOS Ti-6Al-4V

EOS AlSi10MgEOS 316L SS Inconel 718

100 μm

100 μm100 μm 100 μm

EOS MS1 Maraging
Steel

500 μm250 μm250 μm

ARCAM-size EOS-size

100 μm



Computer 
Vision: 
SIFT-VLAD

&

Figure&4.&A&schematic&diagram&illustrating&the&construction&of&SIFTYVLAD&
microstructure&representations.&(a)&Select&oriented&interest&points&(yellow&markers)&
from&a&powder&micrograph&(100&randomly&selected&interest&points&shown).&(b)&
Compute&a&SIFT&descriptor&(blue&grid)&for&each&interest&point.&(c)&Cluster&SIFT&
descriptors&(colored&regions)&such&that&SIFT&descriptors&(black&dots)&are&associated&
with&their&most&similar&visual&word&(image&patches);&compute&a&residual&vector&for&
each&visual&word&(white&arrows).&(d)&Concatenate&the&normalized&residual&vectors&
(red&bars)&of&each&visual&word&(image&patches)&to&construct&the&VLAD&
representation,&which&serves&as&a&microstructure&fingerprint.&
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DeCost et al. (2017) JOM 69 456

Developed by: Prof. E.A. Holm



SIFT, k-means, VLAD

Scale-invariant feature transform (SIFT) was used to quantify features 
of interest in the images.
k-means clustering was used to partition 15 % of the SIFT descriptors 
extracted from the training images into 32 visual words
A vector of locally aggregated descriptors (VLAD) encoding was used to 
compute the difference between the description of the current image 
and the center of the corresponding word.
The net result then has a dimension that is the product of the word 
length and the number of words.



Computer Vision: Confusion Matrices

& &
(a)& (b)&

Figure&5.&Confusion&matrices&for&powder&classification&in&the&(a)&crossYvalidation&
and&(b)&independent&test&sets.&The&rows&designate&the&actual&powder&system,&and&
the&columns&indicate&the&powder&system&predicted&by&the&computer&vision.&The&
numbers&tally&the&fraction&of&images&in&each&actual&powder&system&were&classified&as&
a&given&predicted&powder&system.&Thus,&the&diagonal&entries&represent&the&fraction&
of&accurate&powder&classifications&for&each&powder&system.&
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Cross-validation test set Independent test set

Bottom line: a computer can be trained to recognize and classify different types of powder far more 
reliably than any human, based on micrographs containing many particles.

Note: anomalous microstructures are also readily identified via similar techniques.

Developed by: Prof. E.A. Holm



Image Recognition Pipeline

Clustering

t-SNE

CNN

Hypercolumn

Sparse

Dense

Image Feature 
Selection 

Deep Learning 
Feature 

Extraction
Clustering Visualization

10



Steel Powder Feedstock
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SEM Image



Steel Powder Feedstock
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SEM Image
Segmented & 

Labelled 
Particles



Steel Powder Feedstock

13

SEM Image
Segmented & 
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Particles

Visualization of 
Clustered 
Features



Steel Powder Feedstock: Classes of Powder Particles
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Results: Flowability
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A: Proprietary Al Alloy
B: Proprietary Al Alloy
C: Proprietary Al Alloy
D: Proprietary Al Alloy
E: Proprietary Al Alloy
F: IN 718 GA
G: IN 718 Spheroidized
H: G after sieving
I: Ti64 HDH
J: Ti64 Standard GA0
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Having a low BFE coupled with a low SE usually indicates good flow properties. 
Exceptions occur if the BFE value is low but the SE value is high, that indicates that it may 
be either highly cohesive or have a large number of fines. 

Definitions:
The Specific Energy, SE, is a measure 
of how powder will flow in an 
unconfined or low stress 
environment.
The Basic Flowability Energy, BFE, is 
the energy required to establish a 
particular flow pattern in a 
conditioned, precise volume of 
powder.
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Results: Flowability

17

J: Ti64 StandardI: Ti64 HDH

200 µm2000 µm
Surprising 
result: very 
different 
powder 
morphologies 
yield similar 
flow
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Results: Flowability

Two widely different performing powders were used to test the Granudrum with respect to its accuracy in 
characterizing flowability properties, with reasonable success. 
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J: Ti64 StandardI: Ti64 HDH

Consistency across flowability measurement 
systems: Granudrum vs FT4 Rheometer



Results: Flowability

Powder Interfaces for Standard EOS Ti64, HDH Ti64, Milled IN718

0 1 2

0 0.96 0.02 0.008

1 0 0.53 0.47

2 0 0.24 0.76

Confusion Matrix

Powder Clusters according to Flowability

Milled 
IN718

EOS

HDH

SEM Images for Standard EOS Ti64, HDH Ti64, Milled IN718 (50x)
Powder Interfaces were used 
to determine dynamic angle of 
repose that fit the interface 
with an R2 of 0.98. This was 
used to cluster the powders 
according to their flowability. 
Each point represents one 
experiment run (with a 
particular speed).
The misclassification between 
EOS and HDH can be explained 
by looking at their dynamic 
flow angles which are quite 
similar for a slower rpm (e.g., 
2) and differ significantly for 
higher rpm (e.g., 12)

EOS 
(2)

EOS 
(12)

HDH 
(2)

HDH 
(12)
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Results: Flowability

Powder Interfaces for Standard EOS Ti64, HDH Ti64, Milled IN718

0 1 2

0 0.96 0.02 0.008

1 0 0.53 0.47

2 0 0.24 0.76

Confusion Matrix

Powder Clusters according to Flowability

Milled 
IN718

EOS

HDH

SEM Images for Standard EOS Ti64, HDH Ti64, Milled IN718 (50x)
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t-SNE plot of powder particles 
from three systems



Potential to Answer AM Questions with Data Science

It is possible to identify classes of similar particle
morphology using CNNs and K-means clustering and
t-SNE to visualize the data and then correlate to
flow properties

Establish cutoff point 
for the usage of 
recycled powder lots

Develop flow 
coefficients for 
realistic powder 
based simulations

Quantitatively 
compare powders
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Thank You!
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