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Outline
The main objec-ve of these notes is to introduce you to the use 

of symbolic regression in materials science.
Neural nets are a powerful tool for analysis and building 

regression rela4onships. However, one could say that they are 
limited to linear algebra except for the inclusion of rec4fica4on 
and related opera4ons in neural nets. Some4mes, one wants to 
allow for the development of more complex mathema4cal 
rela4onships.
The main objec-ve symbolic regression is to discover the best 

func-onal form (i.e., mathema-cal equa-on) that fits your data.

And, if you do have instructor permission, please acknowledge Carnegie Mellon if you make public use of these slides



Genetic programming
• Symbolic regression is actually a subset of a larger scope 

known as gene$c programming.
• The objec:ve, just as in linear regression, is to fit a 

dataset. 
• As with any regression, a cost func$on or error func$on

must be defined. A commonly employed measure is 
RMSE (Root Mean Square Error). Other names include 
fitness (which acknowledges Darwin in the use of an 
evolving solu:on), score, error, and loss. 
‘mean absolute error’ is the magnitude of the error
‘mse’ for mean squared error
‘rmse’ for root mean squared error
‘pearson’, for Pearson’s product-moment correla:on coefficient 
‘spearman’ for Spearman’s rank-order correla:on coefficient

• The la?er two methods pertain to indirect op:miza:on
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https://gplearn.readthedocs.io/en/stable/intro.html



Building blocks

• The building blocks for the func:onal forms are 
mathema:cal operator (mul:ply, divide, add …), analy:c 
func:ons (exponen:al, log, power law …), constants 
(numerical values) and cons:tu:ve parameters.

• A fitness func$on must be defined (equivalent to objec$ve 
func$on) along with a choice or error metric (previous 
slide).

• The func$onal set comprises all the operators and func:ons 
and the terminal set comprises all the constants and 
cons:tu:ve parameters.

• As the fiJng proceeds, an evolu:onary algorithm is used to 
explore different combina:ons of building blocks. This is, of 
course, computa:onally expensive.
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Formulae vs. Trees

• A common approach to visualizing gene:c programming 
is to depict an expression (as opposed to an equa:on) in 
the form of a tree.

• In fact, this is more significant than visualiza:on because 
it illustrates how one can build an expression (formula) 
in the computer.

• In Roehrig’s example, one
starts with the binary 
operator “+” and then 
moves down a level to add
e.g., a constant and another
operator such as mul:ply, etc.
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http://www.contrib.andrew.cmu.edu/~roehrig/Com
pFin/Week4/symbreg.htm



Syntax Tree

Alterna:vely, a syntax tree has
func$ons as interior nodes, dark 
blue, and variables & constants as 
leaves (terminal nodes), light blue.
To interpret the tree, one can start 

with the LH leaves. At boUom leV, 
mul:ply X0*X0. Then 3*X1. Then 
apply the subtrac:on (next, 2nd

level up). Finally add 0.5 (top 
node).
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Arity

Each func:on has an 
"arity", which just means 
the number of arguments 
that it takes.  The 
arithme:c operators have 
arity=2.  As another 
example, taking the 
absolute value has arity=1.
Standard (default) set 

shown on the RHS.
You can select which 

func:ons you want to use.
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‘add’ : addition, arity=2. 
‘sub’ : subtraction, arity=2. 
‘mul’ : multiplication, arity=2. 
‘div’ : division, arity=2. 
‘sqrt’ : square root, arity=1. 
‘log’ : log, arity=1. 
‘abs’ : absolute value, arity=1. 
‘neg’ : negative, arity=1. 
‘inv’ : inverse, arity=1. 
‘max’ : maximum, arity=2. 
‘min’ : minimum, arity=2. 
‘sin’ : sine (radians), arity=1. 
‘cos’ : cosine (radians), arity=1. 
‘tan’ : tangent (radians), arity=1
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Formulae versus Trees

• In a more complicated example:

https://en.wikipedia.org/wiki/Symbolic_regression



Multiple Trees, 
Mixing & Matching

• The easy part to understand is the use 
of mul3ple trees, each of which is used 
to compute a set of predicted values, 
from each of which one obtains an 
error es3mate. This, of course, 
determines the fitness of each tree. 
There is a popula+on of trees.

• The harder part to understand is the 
swapping of elements and sub-
structures between trees. This is, 
however, exactly, how gene3c 
programming works, i.e., by mixing 
together elements (gene3c material, if 
you like) between different members 
of the popula+on.
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Crossover
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Quo:ng from gplearn: "Crossover is the principle method of mixing gene:c material 
between individuals and is controlled by the p_crossover parameter. Unlike other 
gene:c opera:ons, it requires two tournaments to be run in order to find a parent 
and a donor.
Crossover takes the winner of a tournament and selects a random subtree from it to 
be replaced. A second tournament is performed to find a donor. The donor also has 
a subtree selected at random and this is inserted into the original parent to form an 
offspring in the next genera:on."



Subtree Mutation

11

Quo:ng from gplearn: "Subtree muta:on is one of the more aggressive muta:on 
opera:ons and is controlled by the p_subtree_muta:on parameter. The reason it is 
more aggressive is that more gene:c material can be replaced by totally naive random 
components. This can reintroduce ex:nct func:ons and operators into the popula:on 
to maintain diversity.
Subtree muta:on takes the winner of a tournament and selects a random subtree 
from it to be replaced. A donor subtree is generated at random and this is inserted 
into the parent to form an offspring in the next genera:on."



Point Mutation
Quo:ng gplearn: "Point muta:on is probably the most common form of muta:on 

in gene:c programming. Like subtree muta:on, it can also reintroduce ex:nct 
func:ons and operators into the popula:on to maintain diversity.
Point muta:on takes the winner of a tournament and selects random nodes from 

it to be replaced. Terminals are replaced by other terminals and func:ons are 
replaced by other func:ons that require the same number of arguments as the 
original node. The resul:ng tree forms an offspring in the next genera:on.
Func:ons and terminals are randomly chosen for replacement as controlled by the 

p_point_replace parameter which guides the average amount of replacement to 
perform."
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Initialization

The gplearn documenta1on has useful advice on 
in1aliza1on, 
h8ps://gplearn.readthedocs.io/en/stable/intro.html.
Consider hyperparameters such as: init_depth, 

init_method, popula1on_size.
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R package
• symbolicRegression is available but it is very basic 
compared to what one can find in python, e.g., 
NASA/bingo
• gramEvol is another package that does include the 
crucial aspect of evolution, i.e., it includes genetic 
programming.  See https://www.r-
bloggers.com/symbolic-regression-genetic-
programming-or-if-kepler-had-r/
• rgp is a genetic programming framework which 
supports symbolic regression
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https://www.r-bloggers.com/symbolic-regression-genetic-programming-or-if-kepler-had-r/


15In R

Symbolic regression has the disadvantage of having a much larger 
space to search than does standard regression, because not only is 
the search space in symbolic regression infinite, but there are an 
infinite number of models which will perfectly fit a finite data set 
(provided that the model complexity isn't artificially limited).

It will generally take a symbolic regression algorithm longer to find 
an appropriate model and parametrization than traditional 
regression techniques. 

The calculations can be sped up by limiting the set of building 
blocks provided to the algorithm, based on existing knowledge of 
the system that produced the data. In the end, using symbolic 
regression is a decision that has to be balanced with how much is 
known about the underlying system.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/
https://en.wikipedia.org/wiki/Symbolic_regressionparaphrased from: 
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Our first example:  Kepler’s third law



17Kepler’s laws

Between 1609 and 1619, Kepler published his three laws of 
planetary motion

• The orbit of a planet is an ellipse with the Sun at one of the two 
foci.

• A line segment joining a planet and the Sun sweeps out equal 
areas during equal intervals of time.

• The square of a planet's orbital period is proportional to the 
cube of the length of the semi-major axis of its orbit, i.e., the 
period is proportional to the maximum distance from the sun to 
the planet (semi-major axis) to the 3/2 power.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/

https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes


18Kepler’s third law

Data:
planets distance period

1   Venus     0.72   0.61
2   Earth     1.00   1.00
3    Mars     1.52   1.84
4 Jupiter     5.20  11.90
5  Saturn     9.53  29.40
6  Uranus    19.10  83.50

We will use symbolic regression to find the functional relation between period 
and distance.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/
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‣install.packages('gramEvol')
‣library("gramEvol")

‣# Kepler's third law (distance in AU)

‣planets <- c("Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus")
‣distance <- c(0.72, 1.00, 1.52, 5.20, 9.53, 19.10)
‣period <- c(0.61, 1.00, 1.84, 11.90, 29.40, 83.50)
‣data.frame(planets, distance, period)

planets distance period
1   Venus     0.72   0.61
2   Earth     1.00   1.00
3    Mars     1.52   1.84
4 Jupiter     5.20  11.90
5  Saturn     9.53  29.40
6  Uranus    19.10  83.50

gramEvol in R
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# grule is a function from the gramEvol package
‣ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),
‣+                 func = grule(sin, cos, tan, log, sqrt),
‣+                 op = grule('+', '-', '*', '/', '^'),
‣+                 var = grule(distance,distance^n, n),
‣+                 n = grule(1, 2, 3, 4, 5, 6, 7, 8, 9))

# set the grammar from ruleDef
grammarDef <- CreateGrammar(ruleDef)
grammarDef
<expr> ::= <op>(<expr>, <expr>) | <func>(<expr>) | <var>
<func> ::= `sin` | `cos` | `tan` | `log` | `sqrt`
<op>   ::= "+" | "-" | "*" | "/" | "^"
<var>  ::= distance | distance^<n> | <n>
<n>    ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

gramEvol in R
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# GrammarRandomExpression generates expressions. Maximum depth of recursion in # rules in 
grammar
set.seed(134)
GrammarRandomExpression(grammarDef, 6)
[[1]]
expression(log(distance^6))
[[2]]
expression(tan(sin(distance^1)) * tan(distance^4))
[[3]]
expression(3)
[[4]]
expression(cos(((log(sin(distance * (distance/distance)))^distance^6)^distance^3)^2))
[[5]]
expression(9)
[[6]]
expression((distance - distance^1)^distance

SymRegFitFunc <- function(expr) {
result <- eval(expr)
if (any(is.nan(result)))
return(Inf)

return (mean(log(1 + abs(period - result))))
}

gramEvol in R

∑
!"#

$
log 1 + |𝑦

̂
! − 𝑦!| /𝑁
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> set.seed(262)
> suppressWarnings(ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, terminationCost 
= 0.05))
> ge
Grammatical Evolution Search Results:
No. Generations:  5 
Best Expression:  sqrt(distance^3) 
Best Cost:        0.0201895728693592

> best.expression <- ge$best$expression
> data.frame(distance, period, Kepler = sqrt(distance^3), GE = eval(best.expression))
distance period     Kepler         GE

1     0.72   0.61  0.6109403  0.6109403
2     1.00   1.00  1.0000000  1.0000000
3     1.52   1.84  1.8739819  1.8739819
4     5.20  11.90 11.8578244 11.8578244
5     9.53  29.40 29.4197753 29.4197753
6    19.10  83.50 83.4737743 83.4737743

gramEvol in R
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Two more examples
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Example 1: 𝑦 = sin(𝑥) + cos(𝑥 + 𝑥)

x <- seq(0, 4*pi, length.out = 201)
y <- sin(x) + cos(x + x)
plot(y)

ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),
+                 func = grule(sin, cos),
+                 op = grule('+', '-', '*'),
+                 var = grule(x))
grammarDef <- CreateGrammar(ruleDef)

SymRegFitFunc <- function(expr) {
+   result <- eval(expr)
+   if (any(is.nan(result)))
+     return(Inf)
+   return (mean(log(1 + abs(y - result))))
+ }

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, terminationCost = 0.05, iterations = 5000, 
max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations:  2149 
Best Expression:  sin(x) + cos(x + x) 
Best Cost:        0 

> plot(y)
> points(eval(ge$best$expressions), col = "red", type = "l")
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Example 1: 𝑦 = sin(𝑥) + cos(𝑥 + 𝑥) (noisy data)

x <- seq(0, 4*pi, length.out = 201)
y <- jitter(sin(x) + cos(x + x),amount=0.2)
plot(y)

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, 
terminationCost = 0.05, iterations = 5000, max.depth = 5)

ge
Grammatical Evolution Search Results:
No. Generations:  5000 
Best Expression:  sin(x) + cos(x + x) 
Best Cost:        0.0923240003917875 

plot(y)
points(eval(ge$best$expressions), col = "red", type = “l")
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Example 2:   𝑦 = sin(𝑥) − cos(𝑥 + 𝑥)

x <- seq(0, 4*pi, length.out = 201)
y <- sin(x) - cos(x + x)
plot(y)

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, 
terminationCost = 0.05, iterations = 5000, max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations:  5000 
Best Expression:  sin(x - cos(x) + x) * cos(x) 
Best Cost:        0.279197898412931 

set.seed(213)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, 
terminationCost = 0.05, iterations = 5000, max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations:  1397 
Best Expression:  sin(x) - cos(x + x) 
Best Cost:        0 
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Genetic programming, 
an Evolutionary Algorithm
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What are genetic algorithms?

Genetic Algorithm (GA) is a search-based optimization technique based on the 
principles of Genetics and Natural Selection. It is frequently used to find 
optimal or near-optimal solutions to difficult problems which otherwise would 
take a lifetime to solve.

In GAs, we have a pool or a population of possible solutions to the given 
problem. These solutions then undergo recombination and mutation (like in 
natural genetics), producing new children, and the process is repeated over 
various generations. Each individual (or candidate solution) is assigned a fitness 
value (based on its objective function value) and the fitter individuals are given a 
higher chance to mate and yield more “fitter” individuals.

Genetic Algorithms are sufficiently randomized in nature, but they perform 
much better than random local search (in which we just try various random 
solutions, keeping track of the best so far), as they exploit historical information 
as well.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
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Basic structure

The following is an example of a generic single-objective genetic 
algorithm.

Step One: Generate the initial population of individuals randomly. 
(First generation)

Step Two: Repeat the following regenerational steps until 
termination:

1. Evaluate the fitness of each individual in the population (time limit, sufficient fitness achieved, 
etc.)

2. Select the fittest individuals for reproduction. (Parents)
3. Breed new individuals through crossover and mutation operations to give birth to offspring.
4. Replace the least-fit individuals of the population with new individuals.

https://en.wikipedia.org/wiki/Evolutionary_algorithm

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Individual
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Reproduce
https://en.wikipedia.org/wiki/Breed
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Offspring
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When should genetic algorithms be used?

In computer science, there is a large set of problems, which are 
NP-Hard. What this essentially means is that, even the most 
powerful computing systems take a very long time (even years!) to 
solve that problem. 

In such a scenario, GAs prove to be an efficient tool to provide 
usable near-optimal solutions in a short amount of time.

A GA can be a big improvement over 
gradient-based methods for complex 
problems with many parameters and
you cannot calculate the gradients.  
Mutations and crossovers enable the
algorithm to “get out of” local minima.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
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Basic structure

This gives the basics for the algorithm.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm



NASA bingo

• Thanks to a collabora1on with Prof. Jacob Hochhalter 
at the Univ. of Utah, we can use the NASA-bingo 
package on github.  Instruc1ons for installa1on and 
use have been posted on Canvas.

• Two example scripts are provided. One generates 
points along a circle, which is of course a very simple 
example. The second uses data from fa1gue tests 
conducted by Virkler et al. 

• The point of this second example is to show that 
exploring a range of possible func1ons leads to the 
Paris Law in a natural fashion.

• D. A. Virkler, B. M. Hillberry, and P. K. Goel, The Statistical Nature of Fatigue Crack 
Propagation, Journal of Engineering Materials and Technology, 101, 148-153 (1979).

32



Fatigue data fitting

• The script virkler_bingo.py contains a number of interes9ng 
features.

• One elementary se;ng is the maximum number of itera9ons which 
is encoded as the max in genera9ons allowed for evolu9on of the 
popula9on:
MAX_GENERATIONS = 3000

• You can also control the size of the popula9on (smaller is faster!):
POP_SIZE = 100

• Another key sec9on specifies the mathema9cal opera9ons to be 
used:
component_generator = 
ComponentGenerator(x.shape[1])
component_generator.add_operator("*")    
component_generator.add_operator("+")    
component_generator.add_operator("-")    
component_generator.add_operator("/")    
component_generator.add_operator("^")
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Fatigue data fitting, results

The results require some effort to read:
×��W�� !"#$%&'()*+,-./0123456789:;�ÿ���<=�>��?@ABCDEFGHIJ�KLMN�O�Q�����#&):��'0<68�9,24.5�-$%(�/1

occurred', ngen=3000, fitness=0.06729947304389196, time=2809.409521)
Generation:  3000

FITNESS    COMPLEXITY    EQUATION
1.851e-03     11    f(X_0) = ((X_0 + 0.1660233929645945 + 

0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302)) )(((X_0 + 0.1660233929645945 + 
0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302)) )((X_0 + 0.1660233929645945 + 
0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302)) ))
1.921e-03     8    f(X_0) = ((X_0 + (X_0)^(X_0 - (X_0)))((X_0 + (X_0)^(X_0 -

(X_0)))(X_0)))(6.066872390301553e-05)
1.933e-03     5    f(X_0) = ((X_0)(X_0))((6.992145775141804e-05)(X_0))
7.145e-03     4    f(X_0) = ((-0.03661352555895907)(X_0))((-0.03661352555895907)(X_0))
2.799e-02     3    f(X_0) = (0.021920988902594266)(X_0)
6.199e-02     1    f(X_0) = 0.2912938396548981

The simplest that is likely to be useful is the one with complexity=5, which is 
just a constant * x^3, where x is the ∆K value. The (Pareto) plot shows the 
trade-off between fitness and complexity. This is the same sort of trade-off 
as we saw in the context of MLR and best-subset vs. ridge vs. lasso.
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Graph of Fitted Curve
Clearly, an excellent fit was obtained! Blue points are 

data and green are the best fit curve
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Testing the procedure
• In the first example with fi;ng a circle, note the sec9on that 

generates the data:
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def generate_circle_pts(r, n):
# create x,y data points that fall on a circle
# these are the data that bingo will try and fit and eqn to

x = np.array([m.cos(m.pi/n*i)*r for i in range(0,n+1)])
y = np.array([m.sin(m.pi/n*j)*r for j in range(0,n+1)])
return x.reshape([len(x),1]), y.reshape([len(y),1])

# tell bingo which mathematical building blocks may be used
component_generator = ComponentGenerator(x.shape[1])
component_generator.add_operator("+")
component_generator.add_operator("-")
component_generator.add_operator("*")
component_generator.add_operator("sqrt")

• In this case, the set of func9ons to be used is quite restricted:

• To try a different test of the procedure, simply insert a new "def" 
of a func9on that generates datapoints from some other func9on 
and allow bingo to fit a func9on to that data.



Other controls

# tell bingo how error is defined

fitness = ExplicitRegression(training_data=training_data, 

metric='mean squared error')

# tell bingo how to calibrate coefficients

local_opt_fitness = ContinuousLocalOptimization(fitness, 

algorithm='Nelder-Mead')
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Open Source vs. 
Commercial Implementation

"AI Feynman: A physics-inspired method for symbolic 
regression", Silviu-Marian Udrescu & Max Tegmark, 
Science Advances (2020) Vol. 6, no. 16, eaay2631
QuoSng, "… the best competitor by far is the 
commercial Eureqa software sold by Nutonian
Inc. at 
https://www.nutonian.com/products/eureqa, 
implementing an improved version of the generic 
search algorithm outlined in (27)." Ref. 27 is  M. 
Schmidt, H. Lipson, DisSlling free-form natural laws 
from experimental data. Science 324 81–85 (2009).
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Summary

• Symbolic Regression combines a small number of key 
features:
– ability to idenSfy a set of non-linear funcSons that 
fit the x-y data supplied
– user choice of funcSon primiSves (which suggests 
that one should confine the search to funcSons that 
are physically reasonable for the parScular data)
– user choice of error measure, e.g., RMSE
– user choice of populaSon size
– reasonable computaSonal cost
– use of geneSc programming to use an evoluSonary 
technique to try different funcSons
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QuesSons?
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