
Data Analytics
for Materials Science

A.D. (Tony) Rolle., Richard LeSar,
Jacob Hochhalter (Univ. of Utah)

Dept. Materials Sci. Eng.
Carnegie Mellon University

Symbolic Regression
Revised: 25th Apr., 2021 Do not re-distribute these slides without instructor permission

Outline
The main objec-ve of these notes is to introduce you to the use

of symbolic regression in materials science.
Neural nets are a powerful tool for analysis and building

regression rela4onships. However, one could say that they are
limited to linear algebra except for the inclusion of rec4fica4on
and related opera4ons in neural nets. Some4mes, one wants to
allow for the development of more complex mathema4cal
rela4onships.
The main objec-ve symbolic regression is to discover the best

func-onal form (i.e., mathema-cal equa-on) that fits your data.

And, if you do have instructor permission, please acknowledge Carnegie Mellon if you make public use of these slides

Genetic programming
• Symbolic regression is actually a subset of a larger scope

known as gene$c programming.
• The objec:ve, just as in linear regression, is to fit a

dataset.
• As with any regression, a cost func$on or error func$on

must be defined. A commonly employed measure is
RMSE (Root Mean Square Error). Other names include
fitness (which acknowledges Darwin in the use of an
evolving solu:on), score, error, and loss.
‘mean absolute error’ is the magnitude of the error
‘mse’ for mean squared error
‘rmse’ for root mean squared error
‘pearson’, for Pearson’s product-moment correla:on coefficient
‘spearman’ for Spearman’s rank-order correla:on coefficient

• The la?er two methods pertain to indirect op:miza:on

3

https://gplearn.readthedocs.io/en/stable/intro.html

Building blocks

• The building blocks for the func:onal forms are
mathema:cal operator (mul:ply, divide, add …), analy:c
func:ons (exponen:al, log, power law …), constants
(numerical values) and cons:tu:ve parameters.

• A fitness func$on must be defined (equivalent to objec$ve
func$on) along with a choice or error metric (previous
slide).

• The func$onal set comprises all the operators and func:ons
and the terminal set comprises all the constants and
cons:tu:ve parameters.

• As the fiJng proceeds, an evolu:onary algorithm is used to
explore different combina:ons of building blocks. This is, of
course, computa:onally expensive.

4

Formulae vs. Trees

• A common approach to visualizing gene:c programming
is to depict an expression (as opposed to an equa:on) in
the form of a tree.

• In fact, this is more significant than visualiza:on because
it illustrates how one can build an expression (formula)
in the computer.

• In Roehrig’s example, one
starts with the binary
operator “+” and then
moves down a level to add
e.g., a constant and another
operator such as mul:ply, etc.

5

http://www.contrib.andrew.cmu.edu/~roehrig/Com
pFin/Week4/symbreg.htm

Syntax Tree

Alterna:vely, a syntax tree has
func$ons as interior nodes, dark
blue, and variables & constants as
leaves (terminal nodes), light blue.
To interpret the tree, one can start

with the LH leaves. At boUom leV,
mul:ply X0*X0. Then 3*X1. Then
apply the subtrac:on (next, 2nd

level up). Finally add 0.5 (top
node).

6

Arity

Each func:on has an
"arity", which just means
the number of arguments
that it takes. The
arithme:c operators have
arity=2. As another
example, taking the
absolute value has arity=1.
Standard (default) set

shown on the RHS.
You can select which

func:ons you want to use.
7

‘add’ : addition, arity=2.
‘sub’ : subtraction, arity=2.
‘mul’ : multiplication, arity=2.
‘div’ : division, arity=2.
‘sqrt’ : square root, arity=1.
‘log’ : log, arity=1.
‘abs’ : absolute value, arity=1.
‘neg’ : negative, arity=1.
‘inv’ : inverse, arity=1.
‘max’ : maximum, arity=2.
‘min’ : minimum, arity=2.
‘sin’ : sine (radians), arity=1.
‘cos’ : cosine (radians), arity=1.
‘tan’ : tangent (radians), arity=1

8

Formulae versus Trees

• In a more complicated example:

https://en.wikipedia.org/wiki/Symbolic_regression

Multiple Trees,
Mixing & Matching

• The easy part to understand is the use
of mul3ple trees, each of which is used
to compute a set of predicted values,
from each of which one obtains an
error es3mate. This, of course,
determines the fitness of each tree.
There is a popula+on of trees.

• The harder part to understand is the
swapping of elements and sub-
structures between trees. This is,
however, exactly, how gene3c
programming works, i.e., by mixing
together elements (gene3c material, if
you like) between different members
of the popula+on.

9

Crossover

10

Quo:ng from gplearn: "Crossover is the principle method of mixing gene:c material
between individuals and is controlled by the p_crossover parameter. Unlike other
gene:c opera:ons, it requires two tournaments to be run in order to find a parent
and a donor.
Crossover takes the winner of a tournament and selects a random subtree from it to
be replaced. A second tournament is performed to find a donor. The donor also has
a subtree selected at random and this is inserted into the original parent to form an
offspring in the next genera:on."

Subtree Mutation

11

Quo:ng from gplearn: "Subtree muta:on is one of the more aggressive muta:on
opera:ons and is controlled by the p_subtree_muta:on parameter. The reason it is
more aggressive is that more gene:c material can be replaced by totally naive random
components. This can reintroduce ex:nct func:ons and operators into the popula:on
to maintain diversity.
Subtree muta:on takes the winner of a tournament and selects a random subtree
from it to be replaced. A donor subtree is generated at random and this is inserted
into the parent to form an offspring in the next genera:on."

Point Mutation
Quo:ng gplearn: "Point muta:on is probably the most common form of muta:on

in gene:c programming. Like subtree muta:on, it can also reintroduce ex:nct
func:ons and operators into the popula:on to maintain diversity.
Point muta:on takes the winner of a tournament and selects random nodes from

it to be replaced. Terminals are replaced by other terminals and func:ons are
replaced by other func:ons that require the same number of arguments as the
original node. The resul:ng tree forms an offspring in the next genera:on.
Func:ons and terminals are randomly chosen for replacement as controlled by the

p_point_replace parameter which guides the average amount of replacement to
perform."

12

Initialization

The gplearn documenta1on has useful advice on
in1aliza1on,
h8ps://gplearn.readthedocs.io/en/stable/intro.html.
Consider hyperparameters such as: init_depth,

init_method, popula1on_size.

13

R package
• symbolicRegression is available but it is very basic
compared to what one can find in python, e.g.,
NASA/bingo
• gramEvol is another package that does include the
crucial aspect of evolution, i.e., it includes genetic
programming. See https://www.r-
bloggers.com/symbolic-regression-genetic-
programming-or-if-kepler-had-r/
• rgp is a genetic programming framework which
supports symbolic regression

14

https://www.r-bloggers.com/symbolic-regression-genetic-programming-or-if-kepler-had-r/

15In R

Symbolic regression has the disadvantage of having a much larger
space to search than does standard regression, because not only is
the search space in symbolic regression infinite, but there are an
infinite number of models which will perfectly fit a finite data set
(provided that the model complexity isn't artificially limited).

It will generally take a symbolic regression algorithm longer to find
an appropriate model and parametrization than traditional
regression techniques.

The calculations can be sped up by limiting the set of building
blocks provided to the algorithm, based on existing knowledge of
the system that produced the data. In the end, using symbolic
regression is a decision that has to be balanced with how much is
known about the underlying system.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/
https://en.wikipedia.org/wiki/Symbolic_regressionparaphrased from:

16

Our first example: Kepler’s third law

17Kepler’s laws

Between 1609 and 1619, Kepler published his three laws of
planetary motion

• The orbit of a planet is an ellipse with the Sun at one of the two
foci.

• A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time.

• The square of a planet's orbital period is proportional to the
cube of the length of the semi-major axis of its orbit, i.e., the
period is proportional to the maximum distance from the sun to
the planet (semi-major axis) to the 3/2 power.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/

https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Orbital_period
https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

18Kepler’s third law

Data:
planets distance period

1 Venus 0.72 0.61
2 Earth 1.00 1.00
3 Mars 1.52 1.84
4 Jupiter 5.20 11.90
5 Saturn 9.53 29.40
6 Uranus 19.10 83.50

We will use symbolic regression to find the functional relation between period
and distance.

https://analyticsindiamag.com/how-to-avoid-overfitting-in-neural-networks/

1 9

‣install.packages('gramEvol')
‣library("gramEvol")

‣# Kepler's third law (distance in AU)

‣planets <- c("Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus")
‣distance <- c(0.72, 1.00, 1.52, 5.20, 9.53, 19.10)
‣period <- c(0.61, 1.00, 1.84, 11.90, 29.40, 83.50)
‣data.frame(planets, distance, period)

planets distance period
1 Venus 0.72 0.61
2 Earth 1.00 1.00
3 Mars 1.52 1.84
4 Jupiter 5.20 11.90
5 Saturn 9.53 29.40
6 Uranus 19.10 83.50

gramEvol in R

2 0

grule is a function from the gramEvol package
‣ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),
‣+ func = grule(sin, cos, tan, log, sqrt),
‣+ op = grule('+', '-', '*', '/', '^'),
‣+ var = grule(distance,distance^n, n),
‣+ n = grule(1, 2, 3, 4, 5, 6, 7, 8, 9))

set the grammar from ruleDef
grammarDef <- CreateGrammar(ruleDef)
grammarDef
<expr> ::= <op>(<expr>, <expr>) | <func>(<expr>) | <var>
<func> ::= `sin` | `cos` | `tan` | `log` | `sqrt`
<op> ::= "+" | "-" | "*" | "/" | "^"
<var> ::= distance | distance^<n> | <n>
<n> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

gramEvol in R

2 1

GrammarRandomExpression generates expressions. Maximum depth of recursion in # rules in
grammar
set.seed(134)
GrammarRandomExpression(grammarDef, 6)
[[1]]
expression(log(distance^6))
[[2]]
expression(tan(sin(distance^1)) * tan(distance^4))
[[3]]
expression(3)
[[4]]
expression(cos(((log(sin(distance * (distance/distance)))^distance^6)^distance^3)^2))
[[5]]
expression(9)
[[6]]
expression((distance - distance^1)^distance

SymRegFitFunc <- function(expr) {
result <- eval(expr)
if (any(is.nan(result)))
return(Inf)

return (mean(log(1 + abs(period - result))))
}

gramEvol in R

∑
!"#

$
log 1 + |𝑦

̂
! − 𝑦!| /𝑁

2 2

> set.seed(262)
> suppressWarnings(ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, terminationCost
= 0.05))
> ge
Grammatical Evolution Search Results:
No. Generations: 5
Best Expression: sqrt(distance^3)
Best Cost: 0.0201895728693592

> best.expression <- ge$best$expression
> data.frame(distance, period, Kepler = sqrt(distance^3), GE = eval(best.expression))
distance period Kepler GE

1 0.72 0.61 0.6109403 0.6109403
2 1.00 1.00 1.0000000 1.0000000
3 1.52 1.84 1.8739819 1.8739819
4 5.20 11.90 11.8578244 11.8578244
5 9.53 29.40 29.4197753 29.4197753
6 19.10 83.50 83.4737743 83.4737743

gramEvol in R

23

Two more examples

2 4

Example 1: 𝑦 = sin(𝑥) + cos(𝑥 + 𝑥)

x <- seq(0, 4*pi, length.out = 201)
y <- sin(x) + cos(x + x)
plot(y)

ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),
+ func = grule(sin, cos),
+ op = grule('+', '-', '*'),
+ var = grule(x))
grammarDef <- CreateGrammar(ruleDef)

SymRegFitFunc <- function(expr) {
+ result <- eval(expr)
+ if (any(is.nan(result)))
+ return(Inf)
+ return (mean(log(1 + abs(y - result))))
+ }

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc, terminationCost = 0.05, iterations = 5000,
max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations: 2149
Best Expression: sin(x) + cos(x + x)
Best Cost: 0

> plot(y)
> points(eval(ge$best$expressions), col = "red", type = "l")

2 5

Example 1: 𝑦 = sin(𝑥) + cos(𝑥 + 𝑥) (noisy data)

x <- seq(0, 4*pi, length.out = 201)
y <- jitter(sin(x) + cos(x + x),amount=0.2)
plot(y)

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,
terminationCost = 0.05, iterations = 5000, max.depth = 5)

ge
Grammatical Evolution Search Results:
No. Generations: 5000
Best Expression: sin(x) + cos(x + x)
Best Cost: 0.0923240003917875

plot(y)
points(eval(ge$best$expressions), col = "red", type = “l")

2 6

Example 2: 𝑦 = sin(𝑥) − cos(𝑥 + 𝑥)

x <- seq(0, 4*pi, length.out = 201)
y <- sin(x) - cos(x + x)
plot(y)

set.seed(314)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,
terminationCost = 0.05, iterations = 5000, max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations: 5000
Best Expression: sin(x - cos(x) + x) * cos(x)
Best Cost: 0.279197898412931

set.seed(213)
ge <- GrammaticalEvolution(grammarDef, SymRegFitFunc,
terminationCost = 0.05, iterations = 5000, max.depth = 5)
ge
Grammatical Evolution Search Results:
No. Generations: 1397
Best Expression: sin(x) - cos(x + x)
Best Cost: 0

27

Genetic programming,
an Evolutionary Algorithm

2 8

What are genetic algorithms?

Genetic Algorithm (GA) is a search-based optimization technique based on the
principles of Genetics and Natural Selection. It is frequently used to find
optimal or near-optimal solutions to difficult problems which otherwise would
take a lifetime to solve.

In GAs, we have a pool or a population of possible solutions to the given
problem. These solutions then undergo recombination and mutation (like in
natural genetics), producing new children, and the process is repeated over
various generations. Each individual (or candidate solution) is assigned a fitness
value (based on its objective function value) and the fitter individuals are given a
higher chance to mate and yield more “fitter” individuals.

Genetic Algorithms are sufficiently randomized in nature, but they perform
much better than random local search (in which we just try various random
solutions, keeping track of the best so far), as they exploit historical information
as well.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm

2 9

Basic structure

The following is an example of a generic single-objective genetic
algorithm.

Step One: Generate the initial population of individuals randomly.
(First generation)

Step Two: Repeat the following regenerational steps until
termination:

1. Evaluate the fitness of each individual in the population (time limit, sufficient fitness achieved,
etc.)

2. Select the fittest individuals for reproduction. (Parents)
3. Breed new individuals through crossover and mutation operations to give birth to offspring.
4. Replace the least-fit individuals of the population with new individuals.

https://en.wikipedia.org/wiki/Evolutionary_algorithm

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Individual
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Reproduce
https://en.wikipedia.org/wiki/Breed
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Offspring

3 0

When should genetic algorithms be used?

In computer science, there is a large set of problems, which are
NP-Hard. What this essentially means is that, even the most
powerful computing systems take a very long time (even years!) to
solve that problem.

In such a scenario, GAs prove to be an efficient tool to provide
usable near-optimal solutions in a short amount of time.

A GA can be a big improvement over
gradient-based methods for complex
problems with many parameters and
you cannot calculate the gradients.
Mutations and crossovers enable the
algorithm to “get out of” local minima.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm

3 1

Basic structure

This gives the basics for the algorithm.

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm

NASA bingo

• Thanks to a collabora1on with Prof. Jacob Hochhalter
at the Univ. of Utah, we can use the NASA-bingo
package on github. Instruc1ons for installa1on and
use have been posted on Canvas.

• Two example scripts are provided. One generates
points along a circle, which is of course a very simple
example. The second uses data from fa1gue tests
conducted by Virkler et al.

• The point of this second example is to show that
exploring a range of possible func1ons leads to the
Paris Law in a natural fashion.

• D. A. Virkler, B. M. Hillberry, and P. K. Goel, The Statistical Nature of Fatigue Crack
Propagation, Journal of Engineering Materials and Technology, 101, 148-153 (1979).

32

Fatigue data fitting

• The script virkler_bingo.py contains a number of interes9ng
features.

• One elementary se;ng is the maximum number of itera9ons which
is encoded as the max in genera9ons allowed for evolu9on of the
popula9on:
MAX_GENERATIONS = 3000

• You can also control the size of the popula9on (smaller is faster!):
POP_SIZE = 100

• Another key sec9on specifies the mathema9cal opera9ons to be
used:
component_generator =
ComponentGenerator(x.shape[1])
component_generator.add_operator("*")
component_generator.add_operator("+")
component_generator.add_operator("-")
component_generator.add_operator("/")
component_generator.add_operator("^")

33

Fatigue data fitting, results

The results require some effort to read:
×��W�� !"#$%&'()*+,-./0123456789:;�ÿ���<=�>��?@ABCDEFGHIJ�KLMN�O�Q�����#&):��'0<68�9,24.5�-$%(�/1

occurred', ngen=3000, fitness=0.06729947304389196, time=2809.409521)
Generation: 3000

FITNESS COMPLEXITY EQUATION
1.851e-03 11 f(X_0) = ((X_0 + 0.1660233929645945 +

0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302)))(((X_0 + 0.1660233929645945 +
0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302)))((X_0 + 0.1660233929645945 +
0.0022660830552822782)/((0.0022660830552822782)(10884.8107199302))))
1.921e-03 8 f(X_0) = ((X_0 + (X_0)^(X_0 - (X_0)))((X_0 + (X_0)^(X_0 -

(X_0)))(X_0)))(6.066872390301553e-05)
1.933e-03 5 f(X_0) = ((X_0)(X_0))((6.992145775141804e-05)(X_0))
7.145e-03 4 f(X_0) = ((-0.03661352555895907)(X_0))((-0.03661352555895907)(X_0))
2.799e-02 3 f(X_0) = (0.021920988902594266)(X_0)
6.199e-02 1 f(X_0) = 0.2912938396548981

The simplest that is likely to be useful is the one with complexity=5, which is
just a constant * x^3, where x is the ∆K value. The (Pareto) plot shows the
trade-off between fitness and complexity. This is the same sort of trade-off
as we saw in the context of MLR and best-subset vs. ridge vs. lasso.

34

Graph of Fitted Curve
Clearly, an excellent fit was obtained! Blue points are

data and green are the best fit curve

35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

Chart Title

da/dN fit

Testing the procedure
• In the first example with fi;ng a circle, note the sec9on that

generates the data:

36

def generate_circle_pts(r, n):
create x,y data points that fall on a circle
these are the data that bingo will try and fit and eqn to

x = np.array([m.cos(m.pi/n*i)*r for i in range(0,n+1)])
y = np.array([m.sin(m.pi/n*j)*r for j in range(0,n+1)])
return x.reshape([len(x),1]), y.reshape([len(y),1])

tell bingo which mathematical building blocks may be used
component_generator = ComponentGenerator(x.shape[1])
component_generator.add_operator("+")
component_generator.add_operator("-")
component_generator.add_operator("*")
component_generator.add_operator("sqrt")

• In this case, the set of func9ons to be used is quite restricted:

• To try a different test of the procedure, simply insert a new "def"
of a func9on that generates datapoints from some other func9on
and allow bingo to fit a func9on to that data.

Other controls

tell bingo how error is defined

fitness = ExplicitRegression(training_data=training_data,

metric='mean squared error')

tell bingo how to calibrate coefficients

local_opt_fitness = ContinuousLocalOptimization(fitness,

algorithm='Nelder-Mead')

37

Open Source vs.
Commercial Implementation

"AI Feynman: A physics-inspired method for symbolic
regression", Silviu-Marian Udrescu & Max Tegmark,
Science Advances (2020) Vol. 6, no. 16, eaay2631
QuoSng, "… the best competitor by far is the
commercial Eureqa software sold by Nutonian
Inc. at
https://www.nutonian.com/products/eureqa,
implementing an improved version of the generic
search algorithm outlined in (27)." Ref. 27 is M.
Schmidt, H. Lipson, DisSlling free-form natural laws
from experimental data. Science 324 81–85 (2009).

38

Summary

• Symbolic Regression combines a small number of key
features:
– ability to idenSfy a set of non-linear funcSons that
fit the x-y data supplied
– user choice of funcSon primiSves (which suggests
that one should confine the search to funcSons that
are physically reasonable for the parScular data)
– user choice of error measure, e.g., RMSE
– user choice of populaSon size
– reasonable computaSonal cost
– use of geneSc programming to use an evoluSonary
technique to try different funcSons

39

Acknowledgements, References

40

• Univ. of Utah: Prof. Jacob Hochhalter

• NASA Langley: Geoffrey F. Bomarito
• Jan Krepl, web notes,

https://jankrepl.github.io/symbolic-regression/
• Koza J.R. Genetic Programming, MIT Press, ISBN

0-262-11189-6, 1998

• www.genetic-programming.org

https://jankrepl.github.io/symbolic-regression/

QuesSons?

41

