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Objectives for the lecture

• The main objec+ve is to reinforce what you should already know 
about sta5s5cs.

• In more detail, given a set of values (datapoints, measurements) you 
are expected to be able to evaluate standard sta5s5cal quan55es 
such as the mean, median, standard devia5on.

• In further detail, you are expected to be able to fit standard 
distribu5ons to your data as a way of quan5fying it and having a 
model for it. For example, is your dataset normally distributed, or 
exponen5al, or gamma …? 

• The secondary objec+ve is for you to understand that many 
materials problems of prac5cal engineering interest are extreme 
value problems, which mo5vates us to quan5fy the tails of 
distribu+ons.  For example, what is the probability of finding a pore 
> 50 µm in the high stress region of a given sample?
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Motivation for lecture

• Developing skills in data analysis is essen1al to 
ge2ng answers to hypotheses.

• A hypothesis should always contain a quan1ta1ve 
statement of how success/confirma1on can be 
determined.

• Univariate sta1s1cs are some1mes sufficient to 
provide an answer.
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Different Types of Uncertainty
Materials 
Variations
- Aleatory
Uncertainty 
because each 
sample has a 
different 
microstructure
Characterization: 
grain size
grain shape …
- Epistemic 
Uncertainty 
because we lack 
knowledge as to 
which measures 
are significant and
we lack knowledge 
of how to generate 
microstructures 
that match by eye

Response Variations
- Aleatory Uncertainty 
because of 
microstructure 
variability (see left 
box)
- Epistemic 
Uncertainty because 
we lack knowledge as 
to deterministic model 
allows us to predict 
where fatigue cracks 
will start in a given 
microstructure
- If we can eliminate 
the above uncertainty, 
then we may be able 
to address the 
epistemic uncertainty 
in microstructure 
characterization

In-class discussion: could 
univariate statistics help us 
distinguish these 2 types of 
uncertainty?



Statistics
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Samples from Populations

• To explain about "bias correc2on" …
• If your dataset is the en2re popula&on that is relevant to 

the problem at hand then you can use standard 
measures of, e.g., variance.

• In-class discussion: differences between a census and a 
poll? Should you use var(x)	on census results?!

• Go to 
https://statisticsglobe.com/variance-in-r-var-function
and let's get an idea of the effect of taking a small 
sample from a large popula2on.

• The "N-1" in the denominator for the sample variance 
calcula2on is the bias correc&on.

• Very important: R computes the sample variance (not 
the popula2on variance).
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Distributions 

• Normal; “bell curve” – standard assump1on in 
sta1s1cal analysis, many mathema1cal advantages.

• Several tests* of normality such as the Kolmogorov-
Smirnov ("KS") and Wilk-Shapiro ("W") tests.

• Log-normal – more commonly found in materials 
science, e.g., grain or par1cle sizes. Important to 
note that this is obtained via a transforma)on of the 
data. 
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• And many others … that we will not examine here 
because the focus of the course is on multi-variate 
methods (and machine learning).

* section 2.4 in Jobson



Large 3D Data Sets – partial list
Serial Sec)oning:
• IN 100 – powder metallurgy Ni alloy (Groeber): 

Groeber-big3D-Grains-Bulk-Edge.txt
• Beta-21S* – single phase Ti alloy (Rowenhorst)

Rowenhorst-Grains-Bulk-Edge.txt
• Monte Carlo simulaMon by Seth Wilson, ADR: 

Seth_Wilson-MonteCarlo-volumes-4399.dat
MonteCarlo-parMcles-ppU101-GrainList-13000000.txt

• Pure Ni – used for GBCD and GB energy (Rohrer)
• ZrO2 – used for GBCD and GB energy (Rohrer)
• Y2O3 – used for GBCD and GB energy (Rohrer)
Thin Metallic Films (courtesy of Prof. K. Barmak):
• Mostly Al, some Cu: ReducedDiameter_StagDerrJih_Cu_A-O.csv
Synchrotron Microscopy (Risø, ORNL, Suter):
• Aluminum
• Pure Ni – mulMple anneal steps
• Ni doped with Bi
• Cu – mulMple strain steps
• LSHR – fa)gue experiment
• Rene88DT – faMgue experiment

* used in Hwk 1

Files in blue are available 
in “datasets” on Canvas



What about 
Extreme Values?

• If you have ever tested the "strength" of a ceramic, you will have 
discovered a substantial variation in the measured value.

• The classical approach to this in materials science is to describe the 
brittle fracture in terms of the "weakest link" , i.e., the largest flaw 
in the high stress region (of the bend bar).

• This means that the average defect/flaw size is of little consequence 
because it is the largest flaw that will lead to fracture.

• A similar approach is the basis for the Griffith theory of brittle 
fracture.

• Therefore, we have to consider the extreme values of the 
population of defects.

Application of HIP Technology | NIPPON TUNGSTEN CO., LTD.
nittan.co.jp



Scatter in Fatigue Life
• Measurement of fa5gue life generally 

exhibits substan5al scaOer, which has been 
the subject of much research. The mo5va5on 
is to determine safety factors.

• There has long been a suspicion that large 
grain sizes play a role in ini5a5ng fa5gue 
cracks. This mo5vates examina5on of grain 
size.

• One difficulty has been separa5ng the 
variability in crack nuclea5on from that of 
crack growth.

• Crack growth generally obeys the Paris law 
with minimal scaOer from microstructural 
varia5ons.

• Crack nuclea5on, however, oUen occupies a 
substan5al frac5on of total life (depicted in a 
S-N plot).
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understood.  This type of behavior with decreasing stress level 

was seen in our earlier study on an D+E titanium alloy [1, 2].  The
experimental points formed a step-like shape with respect to the
CDF at lower stress levels.  This was concluded to be due to 
superposition of two failure mechanisms.  Although more 
experimental points are needed in the present study, it is

interesting to note a step-like shape of data at Vmax = 940 MPa as 
indicated by dashed lines (Figure 7).  This seems an indication of
divergent mechanisms producing the variability in fatigue
lifetimes in this material.

Fig 6: Fatigue life behavior of Rene` 88 DT.

Fig 7: Plot of cumulative distribution functions (CDF) at selected
stress levels

Crack Nucleation Modes

Figures 8 and 9 show the fracture surfaces for specimens tested at

Vmax = 940 MPa with fatigue lives of 664,580 and 7,322,863
cycles, respectively.  Figures 10 and 11 show the fracture surfaces

for specimens tested at Vmax = 1000 MPa with fatigue lives of
632,985 and 825,463 cycles, respectively.  Each of these figures
includes a lower magnification photo showing the location of 
subsurface crack origin and a corresponding high magnification
fractograph highlighting the crack nucleation area (CAN), marked
by a dashed line.  The high magnification fractographs illustrate
the two types of crack nucleation sites that were observed: (i)
crack nucleation from an inclusion (Figures 8(b) and 10(b)) and
(ii) crack nucleation across a crystallographic plane (Figures 9(b)
and 11(b)).  The size of the crystallographic and the inclusion
CNAs appear to be similar in these figures.  However, while lives
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Superalloys 2004, Caton et al., "Divergence of 
mechanisms and the effect on the fatigue life 
variability of Rene88DT"



Motivation
Motivation to Incorporate Extreme Values

Ni-base superalloys
Fatigue crack initiation was observed in large 
grains oriented for slip 

(Caton, Jha, et al., Superalloys 2004)

‘Forget the Representative Volume Element, show me the 
Weakest Volume Element’ – paraphrased from Jim Williams

?
Findley et al., IMR 56;
Larger grain sizes in superalloys
lead to surface nucleation via slip



Historical: pre-Industrial Revolution

• Leonardo da Vinci
• da Vinci wrote in the 1500s that “Among cords of equal thickness, 
the longest is the least strong”.

• Galileo
• Rejected da Vinci’s implication that cutting a cord or rope could 

make it stronger, thereby clearly thinking of it in deterministic 
terms (1638).

• Mariotte
• Investigated the strength of ropes, paper, tin and described the 

results in statistical terms (Traité du mouvement des eaux, 
1686).



Historical Note

J. Amer. Statistical Assoc., 43:243, 403-412 (1948)



Analysis
Extreme Value Analysis Methodology

There can exist generally only 3 types of asymptotic distributions for extreme values: 

ExponenMally Distributed Tails
(e.g., Gaussian)

Polynomial Tails with Cut-Off
(e.g., LSW, Weibull, Hillert)

Polynomially Distributed Tails
(e.g., Power Law, Lognormal)
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Combined Probability Plot

http://www.r-project.org/



Motivation
Assessment of Lognormal ‘Nature’ of IN100 GSD

Values +/- 2σ from mean 
follow lognormal 

Ln(R) should be normal if R is 
lognormally distributed 

Line is normal distribution with 
μ and σ equal to that of Ln(R)

Region of Interest

Lognormal Description Breaks 
Down In Tails

Background



Practical 2D Grain Size Measurement

http://131.111.17.74/issue51/features/buckley/index.html

• WARNING: the following informaSon is qualitaSve in nature.  Significant 
further work required to reduce the ideas to engineering pracSce.

• Measurement of true 3D microstructures is necessary for validaSon of 
technique but is impracScal for everyday use.

• What can we learn from standard 2D cross-secSons taken from a full 3D 
image?



Regeneration of True Grain Size
• For grain size, stereological reconstruction of the 3D 

distribution is a familiar procedure, as described by 
Saltykov, Cahn, Fisher, others.

• What is not yet known is how reliably the upper tails can 
be reproduced.

• The next step is to reconstruct the 3D size distribution 
from the sections of a known 3D distribution and apply 
statistical tests for similarity against the original 3D grain 
size distribution.

• This was done by Tucker et al. (2012), Scripta materialia, 
66, 554-557; they showed that the upper tails could be 
deduced from 2D data.



Linear Regression
• We have N pairs of associated quan22es, i.e., datapoints.
• One variable is taken to be the independent (explanatory, 

predictor) variable; the other is taken to be the dependent 
(response) variable. In so\ware, the name of the first is “x” 
and the second is “y”.

• More generally, there may be mul2ple independent 
variables, in which case we will apply mul&ple linear 
regression.

• It is always a good idea to check the distribu2on of each 
variable: is it normal? Are there outliers? Boxplots or violin 
plots are useful here.

https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture9.pdf

https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/lecture-
notes/MIT18_S096F13_lecnote6.pdf

https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture9.pdf


Questions?
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