Carnegie
Mellon
University

SMSE

Data Analytics
for Materials Science

A.D. (Tony) Rollett

Dept. Materials Sci. Eng., Carnegie Mellon University
Univariate Statistics
Lecture 3A

Revised: 8" Feb., 2021



Objectives for the lecture

The main objective is to reinforce what you should already know
about statistics.

In more detail, given a set of values (datapoints, measurements) you
are expected to be able to evaluate standard statistical quantities
such as the mean, median, standard deviation.

In further detail, you are expected to be able to fit standard
distributions to your data as a way of quantifying it and having a
model for it. For example, is your dataset normally distributed, or
exponential, or gamma ...”?

The secondary objective is for you to understand that many
materials problems of practical engineering interest are extreme
value problems, which motivates us to quantify the tails of
distributions. For example, what is the probability of finding a pore
> 50 um in the high stress region of a given sample?



Motivation for lecture

* Developing skills in data analysis is essential to
getting answers to hypotheses.

* A hypothesis should always contain a quantitative
statement of how success/confirmation can be

determined.
 Univariate statistics are sometimes sufficient to

provide an answer.



Different Types of Uncertainty

Materials
Variations

- Aleatory
Uncertainty
because each
sample has a
different
microstructure
Characterization:
grain size

grain shape ...

- Epistemic
Uncertainty
because we lack
knowledge as to
which measures
are significant and
we lack knowledge
of how to generate
microstructures
that match by eye

Response Variations
- Aleatory Uncertainty
because of
microstructure
variability (see left
box)

- Epistemic
Uncertainty because
we lack knowledge as
to deterministic model
allows us to predict
where fatigue cracks
will start in a given
microstructure

- If we can eliminate
the above uncertainty,
then we may be able
fo address the
epistemic uncertainty
in microstructure
characterization
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Aleatoric uncertainty describes inherent
randomness and is akin to precision.

Epistemic uncertainty is similar to accuracy
in that it describes the bias in the model.

In-class discussion: could
univariate statistics help us
distinguish these 2 types of
uncertainty?



Statistics

bias-corrected
variance

bias-corrected
standard deviation

bias-corrected covariance
between types
of data




Samples from Populations

* To explain about "bias correction” ...

* If your dataset is the entire population that is relevant to
the problem at hand then you can use standard
measures of, e.g., variance.

* In-class discussion: differences between a census and a
poll? Should you use var(x) on census results?!

* Goto
https://statisticsglobe.com/variance-in-r-var-function
and let's get an idea of the effect of taking a small
sample from a large population.

e The "N-1"in the denominator for the sample variance
calculation is the bias correction.

* \Veryimportant: R computes the sample variance (not
the population variance).



Distributions

* Normal; “bell curve” — standard assumption in
statistical analysis, many mathematical advantages.

e Several tests* of normality such as the Kolmogorov-
Smirnov ("KS") and Wilk-Shapiro ("W") tests.

* Log-normal — more commonly found in materials
science, e.g., grain or particle sizes. Important to
note that this is obtained via a transformation of the
data.

* And many others ... that we will not examine here
because the focus of the course is on multi-variate
methods (and machine learning).

* section 2.4 in Jobson



Large 3D Data Sets - partial list

Serial Sectioning:
e IN 100 — powder metallurgy Ni alloy (Groeber):
Groeber-big3D-Grains-Bulk-Edge.txt Files in blue are available

Beta-21S* — Single phase Ti aIon (ROWGHhOFSt) in “datasets” on Canvas
Rowenhorst-Grains-Bulk-Edge.txt

Monte Carlo simulation by Seth Wilson, ADR:
Seth_Wilson-MonteCarlo-volumes-4399.dat
MonteCarlo-particles-ppU101-GrainList-13000000.txt

Pure Ni — used for GBCD and GB energy (Rohrer)
ZrO, — used for GBCD and GB energy (Rohrer)

Zq
e Y,05;— used for GBCD and GB energy (Rohrer) >
Thin Metallic Films (courtesy of Prof. K. Barmak): zq
* Mostly Al, some Cu: ReducedDiameter StagDerrJih_Cu_A-O.csv /|
Synchrotron Microscopy (Ris@, ORNL, Suter): <
! ~]
e Aluminum Vd ) L xq = L3
: . ' xq = Lo
e Pure Ni — multiple anneal steps .
= L]

e Ni doped with Bi
e Cu— multiple strain steps 4

.— Beam stop

) . Diffracting grain
e LSHR - fatigue experiment

Illul'n{natled
e Rene88DT — fatigue experiment PR beS;;lp e plane

*used in Hwk 1
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* |f you have ever tested the "strength" of a ceramic, you will have
discovered a substantial variation in the measured value.

* The classical approach to this in materials science is to describe the
brittle fracture in terms of the "weakest link", i.e., the largest flaw
in the high stress region (of the bend bar).

* This means that the average defect/flaw size is of little consequence
because it is the largest flaw that will lead to fracture.

 Asimilar approach is the basis for the Griffith theory of brittle
fracture.

 Therefore, we have to consider the extreme values of the
population of defects.



Scatter in Fatigue Life

Measurement of fatigue life generally
exhibits substantial scatter, which has been
the subject of much research. The motivation
is to determine safety factors.

There has long been a suspicion that large
grain sizes play a role in initiating fatigue
cracks. This motivates examination of grain
Size.

One difficulty has been separating the
variability in crack nucleation from that of
crack growth.

Crack growth generally obeys the Paris law
with minimal scatter from microstructural
variations.

Crack nucleation, however, often occupies a
substantial fraction of total life (depicted in a
S-N plot).
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Fig 6: Fatigue life behavior of Rene' 88 DT.
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Fig 7: Plot of cumulative distribution functions (CDF) at selected

stress levels

Superalloys 2004, Caton et al., "Divergence of
mechanisms and the effect on the fatigue life
variability of Rene88DT"



Motivation

Motivation to Incorporate Extreme Values

‘Forget the Representative Volume Element, show me the
Weakest Volume Element’ — paraphrased from Jim Williams

nnnnnnnn

40pm

Ni-base superalloys Findley et al., IMR 56;
Eati K initiati b din| Larger grain sizes in superalloys
atigue crack initiation was observed In large lead to surface nucleation via slip
grains oriented for slip
(Caton, Jha, et al., Superalloys 2004)




Historical: pre-Industrial Revolution

e Leonardo da Vinci

e da Vinci wrote in the 1500s that “Among cords of equal thickness,
the longest is the least strong”.

e Galileo

e Rejected da Vinci’s implication that cutting a cord or rope could

make it stronger, thereby clearly thinking of it in deterministic
terms (1638).

e Mariotte

e |nvestigated the strength of ropes, paper, tin and described the

results in statistical terms (Traité du mouvement des eaux,
1686).



Historical Note

APPLICATION OF THE THEORY OF EXTREME
VALUES IN FRACTURE PROBLEMS*

BexsaMiN ErsTEIN
Coal Research Laboratory, Carnegie Institute of Technology

In this paper it is shown that the theory of extreme values
is pertinent to the treatment of certain aspects of the fracture
or break-down of materials used in modern technology. An at-
tempt is made to integrate some of the results scattered
through the technical literature,

J. Amer. Statistical Assoc., 43:243,403-412 (1948)

2 F, T. Peirce, “Tensile Tests for Cotton Yarns V. ‘The Weakest Link’—Theorems on the Strength
of Long and of Composite Specimens,” Journal of the Textile Institute, Transactions, 17, 355 (1926).

3 W. Weibull, “A Statistical Theory of the Strength of Materials,” Ing. Vetenskaps Akad. Handl.,
No. 151 (1939); “The Phenomenon of Rupture in Solids,” Ibid., No. 153 (1939). See also John Tucker,
“Statistical Theory of the Effect of the Dimensions and Method of Loading upon the Modulus of Rup-
ture of Beams,” Proceedings of the American Society of Testing Materials, 41, 1072 (1941).

¢ N. Davidenkow, E. Shevandin and F. Wittman, “The Influence of Size on the Brittle Strength of
Steel,” Journal of Applied Mechanics, 14, No. 1, A63-67 (1947).

8 T. A. Kontorova, J. Tech. Phys. U.S.8.R., 10, 886 (1940); J. I. Frenkel and T. A. Kontorova, “A
Statistical Theory of the Brittle Strength of Real Crystals,” J. Phys. U.S.S.R., 7, 108 (1943).



Analysis

Extreme Value Analysis Methodology

There can exist generally only 3 types of asymptotic distributions for extreme values:

Type | (Gumbel)

Exponentially Distributed Tails
(e.g., Gaussian)

FYn(yn):e

_e_an (yn —Up )

-Ln(Ln(1/F(y))

-Ln(Ln(1/F(y))

ty, (v,)= e(y” jk Fy (v,)= e(z:vyvz )k

Type Il (Frechet) Type [l (Weibull)
Polynomially Distributed Tails Polynomial Tails with Cut-Off
(e.g., Power Law, Lognormal) (e.g., LSW, Weibull, Hillert)
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-Ln(Ln(1/F(y))

Ln(x) | Ln(x)



Combined Probability Plot
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Bhatiyatond

Assessment of Lognormal ‘Nature’ of IN100 GSD

Lognormal Description Breaks
o Down In Tails
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Probability in %

Practical 2D Grain Size Measurement

WARNING: the following information is qualitative in nature. Significant
further work required to reduce the ideas to engineering practice.

Measurement of true 3D microstructures is necessary for validation of
technique but is impractical for everyday use.

What can we learn from standard 2D cross-sections taken from a full 3D

i ?
IMmage: http://131.111.17.74/issue5 1/features/buckley/index.html
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Regeneration of True Grain Size

For grain size, stereological reconstruction of the 3D
distribution is a familiar procedure, as described by
Saltykov, Cahn, Fisher, others.

What is not yet known is how reliably the upper tails can
be reproduced.

The next step is to reconstruct the 3D size distribution
from the sections of a known 3D distribution and apply
statistical tests for similarity against the original 3D grain
size distribution.

This was done by Tucker et al. (2012), Scripta materialia,
66, 554-557; they showed that the upper tails could be
deduced from 2D data.



Linear Regression

We have N pairs of associated quantities, i.e., datapoints.
One variable is taken to be the independent (explanatory,
predictor) variable; the other is taken to be the dependent
(response) variable. In software, the name of the first is “x”
and the second is “y”.

More generally, there may be multiple independent
variables, in which case we will apply multiple linear
regression.

It is always a good idea to check the distribution of each
variable: is it normal? Are there outliers? Boxplots or violin
plots are useful here.

https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture9.pdf

https://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/lecture-
notes/MIT18_S096F13_lecnote6.pdf


https://www.gs.washington.edu/academics/courses/akey/56008/lecture/lecture9.pdf

Questions?

20



